Large-scale machine learning course

MapReduce and PageRank

Chloé-Agathe Azencott

Center for Computational Biology (CBIO) Mines ParisTech - Institut Curie - INSFRM U1331 PSL Research University, Paris, France

March 7, 2025

Support **US** researchers facing major attacks from the Trump administration, threatening science & academic freedom.

Support **US** researchers facing major attacks from the Trump administration, threatening science & academic freedom.

In France:

- campaigns against post-colonial studies (alleged "islamo-leftism");
- 60 out of 75 French universities were in deficit in 2024;
- 1 billion EUR **budget cut** to higher ed in 2025.

– Facebook:

 300 PB of data stored in 2014 (4 PB of data created each day)

¹http://www.worldwidewebsize.com/

– Facebook:

- 300 PB of data stored in 2014 (4 PB of data created each day) $1 PB = 10^{15} B = 1000 TB$.

¹http://www.worldwidewebsize.com/

– Facebook:

 300 PB of data stored in 2014 (4 PB of data created each day)

 $1 \text{ PB} = 10^{15} \text{ B} = 1000 \text{ TB}.$

- reading data from disk:

¹http://www.worldwidewebsize.com/

- Facebook:

- 300 PB of data stored in 2014 (4 PB of data created each day) $1 PB = 10^{15} B = 1000 TB$.
- reading data from disk:
 - Hard disk drives (HDD): 100-200 MB/s \Rightarrow 50-100 years.

¹ http://www.worldwidewebsize.com/

- Facebook:

- 300 PB of data stored in 2014 (4 PB of data created each day) $1 PB = 10^{15} B = 1000 TB$.
- reading data from disk:
 - Hard disk drives (HDD): 100-200 MB/s \Rightarrow 50-100 years.
 - Solid state drives (SSD): 500 MB/s ⇒ 20 years.

¹ http://www.worldwidewebsize.com/

– Facebook:

- 300 PB of data stored in 2014 (4 PB of data created each day) $1 PB = 10^{15} B = 1000 TB$.
- reading data from disk:
 - Hard disk drives (HDD): 100-200 MB/s \Rightarrow 50-100 years.
 - Solid state drives (SSD): 500 MB/s ⇒ 20 years.
- Google

¹ http://www.worldwidewebsize.com/

– Facebook:

- 300 PB of data stored in 2014 (4 PB of data created each day) $1 PB = 10^{15} B = 1000 TB$.
- reading data from disk:
 - Hard disk drives (HDD): 100-200 MB/s \Rightarrow 50-100 years.
 - Solid state drives (SSD): 500 MB/s ⇒ 20 years.

- Google

60 billion¹ webpages indexed.

¹ http://www.worldwidewebsize.com/

– Facebook:

- 300 PB of data stored in 2014 (4 PB of data created each day) $1 PB = 10^{15} B = 1000 TB$.
- reading data from disk:
 - Hard disk drives (HDD): 100-200 MB/s \Rightarrow 50-100 years.
 - Solid state drives (SSD): 500 MB/s ⇒ 20 years.

Google

- 60 billion¹ webpages indexed.
- median webpage size: 2 MB.

¹ http://www.worldwidewebsize.com/

- Facebook:

- 300 PB of data stored in 2014 (4 PB of data created each day) $1 PB = 10^{15} B = 1000 TB$.
- reading data from disk:
 - Hard disk drives (HDD): 100-200 MB/s \Rightarrow 50-100 years.
 - Solid state drives (SSD): 500 MB/s ⇒ 20 years.

Google

- 60 billion¹ webpages indexed.
- median webpage size: 2 MB.
 - \Rightarrow 120 PB.

¹ http://www.worldwidewebsize.com/

- Data set with 10^{10} samples and 10^4 features

- Data set with 10¹⁰ samples and 10⁴ features
- Memory usage
 - 10^{14} numbers $\Rightarrow \mathcal{O}(10^{15})$ B = 1PB (with a 64-bit encoding)
 - big hard drives

- Data set with 10¹⁰ samples and 10⁴ features
- Memory usage
 - 10^{14} numbers $\Rightarrow \mathcal{O}(10^{15})$ B = 1PB (with a 64-bit encoding)
 - big hard drives \approx 20 TB \Rightarrow 50 of them

- Data set with 10¹⁰ samples and 10⁴ features
- Memory usage
 - 10^{14} numbers $\Rightarrow \mathcal{O}(10^{15})$ B = 1PB (with a 64-bit encoding)
 - big hard drives \approx 20 TB \Rightarrow 50 of them
- Time complexity
 - PCA, ridge regression, etc:

- Data set with 10¹⁰ samples and 10⁴ features
- Memory usage
 - -10^{14} numbers $\Rightarrow \mathcal{O}(10^{15})$ B = 1PB (with a 64-bit encoding)
 - big hard drives \approx 20 TB \Rightarrow 50 of them
- Time complexity
 - PCA, ridge regression, etc: $\mathcal{O}(np^2)$ operations = 10^{18} operations $p^3 \ll np^2$

- Data set with 10¹⁰ samples and 10⁴ features
- Memory usage
 - -10^{14} numbers $\Rightarrow \mathcal{O}(10^{15})$ B = 1PB (with a 64-bit encoding)
 - big hard drives \approx 20 TB \Rightarrow 50 of them
- Time complexity
 - PCA, ridge regression, etc: $\mathcal{O}(np^2)$ operations = 10^{18} operations $p^3 \ll np^2$
 - My laptop: 8 IntelCore i7-8565U CPUs Peak performance of one i7-8565U CPU: 115 GFLOPS $\approx 10^{11}$ FLOPS FLOPS = FLoating point Operations Per Second

- Data set with 10¹⁰ samples and 10⁴ features
- Memory usage
 - -10^{14} numbers $\Rightarrow \mathcal{O}(10^{15})$ B = 1PB (with a 64-bit encoding)
 - big hard drives \approx 20 TB \Rightarrow 50 of them
- Time complexity
 - PCA, ridge regression, etc: $\mathcal{O}(np^2)$ operations = 10^{18} operations $p^3 \ll np^2$
 - My laptop: 8 IntelCore i7-8565U CPUs Peak performance of one i7-8565U CPU: 115 GFLOPS $\approx 10^{11}$ FLOPS FLOPS = FLoating point Operations Per Second

- Data set with 10¹⁰ samples and 10⁴ features
- Memory usage
 - 10^{14} numbers $\Rightarrow \mathcal{O}(10^{15})$ B = 1PB (with a 64-bit encoding)
 - big hard drives \approx 20 TB \Rightarrow 50 of them
- Time complexity
 - PCA, ridge regression, etc: $\mathcal{O}(np^2)$ operations = 10^{18} operations $p^3 \ll np^2$
 - $-\,$ My laptop: 8 IntelCore i7-8565U CPUs Peak performance of one i7-8565U CPU: 115 GFLOPS $\approx 10^{11}$ FLOPS FLOPS = FLoating point Operations Per Second
 - \Rightarrow 10⁷ seconds \approx 4 months

- Number 1 of the Nov. 2024 TOP500²:

²https://www.top500.org/

- Number 1 of the Nov. 2024 TOP500²: El Capitan
 - Nodes:
 - CPU: AMD 4th Gen EPYC 24C Genoa
 - GPU: AMD Instinct MI300A (24 CPU cores + one GPU)
 - Interconnect switch: HPE Slingshot 64-port switch (12.8 Tb/s)
- 11 039 616 cores (10% CPUs, 90% GPUs)

²https://www.top500.org/

- Number 1 of the Nov. 2024 TOP500²: El Capitan
 - Nodes:
 - CPU: AMD 4th Gen EPYC 24C Genoa
 - GPU: AMD Instinct MI300A (24 CPU cores + one GPU)
 - Interconnect switch: HPE Slingshot 64-port switch (12.8 Tb/s)
- 11 039 616 cores (10% CPUs, 90% GPUs)
- − **Peak performance:** 2 746 PFLOPS $\approx 3 \times 10^{18}$ FLOPS

²https://www.top500.org/

- Number 1 of the Nov. 2024 TOP500²: El Capitan
 - Nodes:
 - CPU: AMD 4th Gen EPYC 24C Genoa
 - GPU: AMD Instinct MI300A (24 CPU cores + one GPU)
 - Interconnect switch: HPE Slingshot 64-port switch (12.8 Tb/s)
- 11 039 616 cores (10% CPUs, 90% GPUs)
- − Peak performance: 2 746 PFLOPS $\approx 3 \times 10^{18}$ FLOPS
 - 3×10^7 times faster than my laptop with 10^6 times more cores

²https://www.top500.org/

- Number 1 of the Nov. 2024 TOP500²: El Capitan
 - Nodes:
 - CPU: AMD 4th Gen EPYC 24C Genoa
 - GPU: AMD Instinct MI300A (24 CPU cores + one GPU)
 - Interconnect switch: HPE Slingshot 64-port switch (12.8 Tb/s)
- 11 039 616 cores (10% CPUs, 90% GPUs)
- Peak performance: 2 746 PFLOPS $\approx 3 \times 10^{18}$ FLOPS
 - 3×10^7 times faster than my laptop with 10^6 times more cores
- − Power: 29 581 kW \approx 250 GWh/year

Power consumption per year and inhabitant in France pprox

²https://www.top500.org/

- Number 1 of the Nov. 2024 TOP500²: El Capitan
 - Nodes:
 - CPU: AMD 4th Gen EPYC 24C Genoa
 - GPU: AMD Instinct MI300A (24 CPU cores + one GPU)
 - Interconnect switch: HPE Slingshot 64-port switch (12.8 Tb/s)
- 11 039 616 cores (10% CPUs, 90% GPUs)
- Peak performance: 2 746 PFLOPS $\approx 3 \times 10^{18}$ FLOPS
 - 3×10^7 times faster than my laptop with 10^6 times more cores
- − Power: 29 581 kW \approx 250 GWh/year

Power consumption per year and inhabitant in France pprox 2 MWh/year

²https://www.top500.org/

- Number 1 of the Nov. 2024 TOP500²: El Capitan
 - Nodes:
 - CPU: AMD 4th Gen EPYC 24C Genoa
 - GPU: AMD Instinct MI300A (24 CPU cores + one GPU)
 - Interconnect switch: HPE Slingshot 64-port switch (12.8 Tb/s)
- 11 039 616 cores (10% CPUs, 90% GPUs)
- Peak performance: 2 746 PFLOPS $\approx 3 \times 10^{18}$ FLOPS
 - 3×10^7 times faster than my laptop with 10^6 times more cores
- − Power: 29 581 kW \approx 250 GWh/year

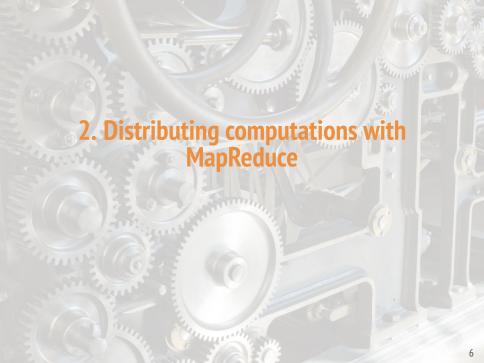
Power consumption per year and inhabitant in France pprox 2 MWh/year

⇒ equivalent to a city of 250 000 inhabitants

²https://www.top500.org/

Disk storage vs volatile memory

- Accessing a **disk block** \approx 100 μ s (SDD) 10 ms (HDD).
- Accessing **DRAM** \approx 100 ns.



MapReduce

- Working with large data requires distributing:
 - the data;
 - the computations.

Cluster architecture

- Single node:
 - 1-2 CPU (central processing unit), each containing 8-32 cores
 - shared memory (RAM)
- Cluster architecture: switches connect racks which contain 16-64 nodes.

Challenges

Large-scale computing for data mining / machine learning problems on **commodity hardware:**

- Distribute data;
- Distribute computations;
- Write distributed programs easily;
- Robustness to failure:

If one node fails every 3 years and you have 1 000 nodes: 1 failure/day.

MapReduce idea

- Divide the data in chunks;
- Keep computation close to the data (chunk);
- Redundancy: store data multiple times;
- MapReduce: two ingredients:
 - Storage infrastructure: distributed file systems
 Google File System (GFS), Hadoop Distributed File Systems (HDFS);
 - Programming model: MapReduce Google MapReduce, Hadoop, Spark, etc.

2.1 Distributed file systems

- Goal: store data persistently, immune to node failure;
- When to use a DFS:
 - Huge files (> 100 GB;)
 - Rare data modifications;
 - Frequent data reads and appends.
- Examples: Google File System (GFS), Hadoop Distributed File Systems (HDFS).

Data chunks

- Data is split in contiguous chunks;
- Chunk size: 16-64 MB;
- Replication:
 - Each chunk is replicated 2-3 times;
 - Each replicate is kept in a different rack (ideally.)
- Master node (aka Name node);
 - stores meta-data about where chunks are stored;
 - may be replicated as well.
- Accessing data:
 - talk to master node to know which chunk server to address;
 - talk to chunk server to access the data.
- Keep computation close to the data: chunk server = compute server

Exemple = counting the occurrences of all words that appear in a document
 Overall principle:

- Exemple = counting the occurrences of all words that appear in a document
 Overall principle:
 - Split the data in chunks.

- Exemple = counting the occurrences of all words that appear in a document
 Overall principle:
 - Split the data in chunks.
 Here: split the document in chunks of text.

Exemple = counting the occurrences of all words that appear in a document
 Overall principle:

- **Split** the data in chunks.

Here: split the document in chunks of text.

- Map step: extract information from chunk, return as (key, value) pairs.
 - All Map workers execute the same Map function.
 - Map task: Executing a Map function on one chunk.

Exemple = counting the occurrences of all words that appear in a document
 Overall principle:

- **Split** the data in chunks.

Here: split the document in chunks of text.

- Map step: extract information from chunk, return as (key, value) pairs.
 - All Map workers execute the same Map function.
 - Map task: Executing a Map function on one chunk.

Here: produce one (word, word_occurrence) pair per word occurring in the chunk.

Exemple = counting the occurrences of all words that appear in a document
 Overall principle:

- **Split** the data in chunks.

Here: split the document in chunks of text.

- Map step: extract information from chunk, return as (key, value) pairs.
 - All Map workers execute the same Map function.
 - Map task: Executing a Map function on one chunk.

Here: produce one (word, word_occurrence) pair per word occurring in the chunk.

Group (key, value) pairs per key.

Exemple = counting the occurrences of all words that appear in a document
 Overall principle:

- **Split** the data in chunks.

Here: split the document in chunks of text.

- Map step: extract information from chunk, return as (key, value) pairs.
 - All Map workers execute the same Map function.
 - Map task: Executing a Map function on one chunk.

Here: produce one (word, word_occurrence) pair per word occurring in the chunk.

- Group (key, value) pairs per key.
- Reduce step: transform the values for the same key.
 - All Reduce workers (also called reducers) execute the same Reduce function.
 - Reduce task: Executing a Reduce function on one key.

Exemple = counting the occurrences of all words that appear in a document

Overall principle:

Split the data in chunks.

Here: split the document in chunks of text.

- Map step: extract information from chunk, return as (key, value) pairs.
 - All Map workers execute the same Map function.
 - Map task: Executing a Map function on one chunk.

Here: produce one (word, word_occurrence) pair per word occurring in the chunk.

- Group (key, value) pairs per key.
- Reduce step: transform the values for the same key.
 - All Reduce workers (also called reducers) execute the same Reduce function.
 - Reduce task: Executing a Reduce function on one key.

Here: sum the values of all counts for the same word.

Exemple = counting the occurrences of all words that appear in a document
 Overall principle:

- **Split** the data in chunks.

Here: split the document in chunks of text.

- Map step: extract information from chunk, return as (key, value) pairs.
 - All Map workers execute the same Map function.
 - Map task: Executing a Map function on one chunk.

Here: produce one (word, word_occurrence) pair per word occurring in the chunk.

- Group (key, value) pairs per key.
- Reduce step: transform the values for the same key.
 - All Reduce workers (also called reducers) execute the same Reduce function.
 - Reduce task: Executing a Reduce function on one key.

Here: sum the values of all counts for the same word.

Combine the outputs of the different keys in a final result.

Exemple = counting the occurrences of all words that appear in a document
 Overall principle:

Split the data in chunks.

Here: split the document in chunks of text.

- Map step: extract information from chunk, return as (key, value) pairs.
 - All Map workers execute the same Map function.
 - Map task: Executing a Map function on one chunk.

Here: produce one (word, word_occurrence) pair per word occurring in the chunk.

- Group (key, value) pairs per key.
- Reduce step: transform the values for the same key.
 - All Reduce workers (also called reducers) execute the same Reduce function.
 - Reduce task: Executing a Reduce function on one key.

Here: sum the values of all counts for the same word.

Combine the outputs of the different keys in a final result.
 Here: write the (word, total occurrences) to output file.

MapReduce environment

- The MapReduce environment takes care of:
 - Partitioning the input data;
 - Scheduling the program's execution across a set of compute nodes;
 - **Grouping** Map outputs by keys;
 - Handling node failures;
 - Managing the communication between nodes.
- The programmer provides:
 - The **Map** function;
 - The **Reduce** function.

Examples of problems suited for MapReduce

– Web corpus:

Data: each entry is a line describing a web page.
 URL size data ...

 Problems: find information (e.g. total number of bytes, frequent words, etc.) for each host.

Natural language processing:

- Data: each entry is a line describing a document.
 document text
- Problems: count occurrences of words, phrases, sentences, sequences of 3 words, etc. in the corpus.

Database operations:

Selection, union, intersection, natural join, aggregation.

Linear algebra.

 $M \in \mathbb{R}^{n \times n} \text{ and } \vec{v} \in \mathbb{R}^{n}.$

Goal: compute $x_i = \sum_{j=1}^n M_{ij} v_j$ for all $i=1,\dots,n.$

n large but M sparse: store M as

```
M \in \mathbb{R}^{n \times n} \text{ and } \vec{v} \in \mathbb{R}^{n}.
```

Goal: compute
$$x_i = \sum_{j=1}^n M_{ij} v_j$$
 for all $i=1,\dots,n.$

n large but M sparse: store M as a list of (i, j, M_{ij}).

```
M \in \mathbb{R}^{n \times n} \text{ and } \vec{v} \in \mathbb{R}^{n}.
```

Goal: compute $x_i = \sum_{j=1}^n M_{ij} v_j$ for all $i=1,\dots,n.$

n large but M **sparse:** store M as a list of (i, j, M_{ij}) .

Version 1: Assume \vec{v} fits in worker memory.

- Map function:

- input = M_{ij} .
- value = $M_{ij}v_j$.
- key = i.

```
M \in \mathbb{R}^{n \times n} and \vec{v} \in \mathbb{R}^{n}.
```

Goal: compute
$$x_i = \sum_{j=1}^n M_{ij} v_j$$
 for all $i=1,\dots,n$.

n large but M **sparse:** store M as a list of (i, j, M_{ij}) .

Version 1: Assume \vec{v} fits in worker memory.

- Map function:

- input = M_{ij} .
- value = $M_{ij}v_j$.
- key = i.

– Reduce function:

 $M \in \mathbb{R}^{n \times n}$ and $\vec{v} \in \mathbb{R}^n$.

Goal: compute $x_i = \sum_{j=1}^n M_{ij} v_j$ for all $i=1,\ldots,n$.

n large but M **sparse:** store M as a list of (i, j, M_{ij}) .

Version 1: Assume \vec{v} fits in worker memory.

- Map function:

- input = M_{ij} .
- value = $M_{ij}v_j$.
- key = i.

– Reduce function:

- Sum all values for key i.
- output = (i, x_i) .

 $M \in \mathbb{R}^{n \times n}$ and $\vec{v} \in \mathbb{R}^{n}$.

Goal: compute $x_i = \sum_{j=1}^n M_{ij} v_j$ for all $i = 1, \dots, n$.

n large but M **sparse:** store M as a list of (i, j, M_{ij}) .

Version 2: Assume \vec{v} does not fit in worker memory.

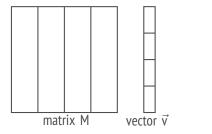
 $M \in \mathbb{R}^{n \times n}$ and $\vec{v} \in \mathbb{R}^n$.

Goal: compute $x_i = \sum_{j=1}^n M_{ij} v_j$ for all $i=1,\dots,n$.

n large but M **sparse:** store M as a list of (i, j, M_{ij}) .

Version 2: Assume \vec{v} does not fit in worker memory.

– Divide M and \vec{v} into K stripes $\mathcal{I}_k = [km \dots (k+1)m-1]$



 $M \in \mathbb{R}^{n \times n}$ and $\vec{v} \in \mathbb{R}^{n}$.

Goal: compute $x_i = \sum_{i=1}^n M_{ij} v_j$ for all $i=1,\dots,n$.

n large but M sparse: store M as a list of (i, j, M_{ij}) .

Version 2: Assume \vec{v} does not fit in worker memory.

- Divide M and \vec{v} into K **stripes** $\mathcal{I}_k = [km \dots (k+1)m-1]$
- Each Map task gets:
 - one stripe of M (fits in memory because M sparse);
 - the corresponding stripe of \vec{v} , in memory.
- and outputs: $(i, \sum_{j \in \mathcal{I}_k} M_{ij} v_j)$

 $M \in \mathbb{R}^{n \times n}$ and $\vec{v} \in \mathbb{R}^{n}$.

Goal: compute $x_i = \sum_{i=1}^n M_{ij} v_j$ for all $i=1,\dots,n$.

n large but M sparse: store M as a list of (i, j, M_{ij}) .

Version 2: Assume \vec{v} does not fit in worker memory.

- Divide M and \vec{v} into K **stripes** $\mathcal{I}_k = [km \dots (k+1)m-1]$
- Each Map task gets:
 - one stripe of M (fits in memory because M sparse);
 - the corresponding stripe of \vec{v} , in memory.
- and outputs: $(i, \sum_{j \in \mathcal{I}_k} M_{ij} v_j)$
- The Reduce function is the same as before (sum all values for key i).

 $M \in \mathbb{R}^{n \times m}, P \in \mathbb{R}^{m \times p}$ Goal: compute $Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}$

Version 1: one MapReduce step.

$$M \in \mathbb{R}^{n \times m}, P \in \mathbb{R}^{m \times p} \qquad \text{ Goal: compute } Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}$$

Version 1: one MapReduce step.

- Reduce step: For key (i, j):
 - Multiply the values that have the same k.
 - Sum these products and return (i, j), Q_{ij}.

$$M \in \mathbb{R}^{n \times m}, P \in \mathbb{R}^{m \times p} \qquad \text{ Goal: compute } Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}$$

Version 1: one MapReduce step.

- Map step:

- Input = (u, v, A_{uv}, δ) where $\delta = 0$ if A = M and 1 otherwise
- Output if A = M: for j = 1, ..., p, key=(u, j), value=(v, M_{uv})
- Output if A = P: for i = 1, ..., n, key=(i, v), value= (u, P_{uv})
- Reduce step: For key (i, j) :
 - For each key (i, j), we have all M_{ik} and all P_{kj} values.
 - Multiply the values that have the same k.
 - Sum these products and return (i, j), Q_{ij}.

 $M \in \mathbb{R}^{n \times m}, P \in \mathbb{R}^{m \times p}$ Goal: compute $Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}$

Version 2: two MapReduce steps

```
M \in \mathbb{R}^{n \times m}, P \in \mathbb{R}^{m \times p}   
   Goal: compute Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}
```

Version 2: two MapReduce steps

- Map step 1:

- Input = (u, v, A_{uv}, δ) where $\delta = 0$ if A = M and 1 otherwise.
- Output if A = M: key=v, value= $(0, u, M_{uv})$.
- Output if A = P: key=u, value= $(1, v, P_{uv})$.

$$M \in \mathbb{R}^{n \times m}, P \in \mathbb{R}^{m \times p} \qquad \text{ Goal: compute } Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}$$

Version 2: two MapReduce steps

- Map step 1:

- Input = (u, v, A_{uv}, δ) where $\delta = 0$ if A = M and 1 otherwise.
- Output if A = M: key=v, value= $(0, u, M_{uv})$.
- Output if A = P: key=u, value= $(1, v, P_{uv})$.

– Reduce step 1: For key k :

- Input = $(0, i, M_{ik})$ for all $1 \le i \le n$ and $(1, j, P_{kj})$ for all $1 \le j \le p$.
- Return $((i,j), M_{ik}P_{kj})$ for all $1 \leq i \leq n$ and $1 \leq j \leq p$.

$$M \in \mathbb{R}^{n \times m}, P \in \mathbb{R}^{m \times p}$$

 Goal: compute $Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}$

Version 2: two MapReduce steps

- Map step 1:

- Input = (u, v, A_{uv}, δ) where $\delta = 0$ if A = M and 1 otherwise.
- Output if A = M: key=v, value= $(0, u, M_{uv})$.
- Output if A = P: key=u, value= $(1, v, P_{uv})$.

– Reduce step 1: For key k :

- Input = $(0, i, M_{ik})$ for all $1 \le i \le n$ and $(1, j, P_{kj})$ for all $1 \le j \le p$.
- Return $((i,j),M_{ik}P_{kj})$ for all $1 \leq i \leq n$ and $1 \leq j \leq p$.
- Map step 2: Identity.

```
M \in \mathbb{R}^{n \times m}, P \in \mathbb{R}^{m \times p}   
   Goal: compute Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}
```

Version 2: two MapReduce steps

– Map step 1:

- Input = (u, v, A_{uv}, δ) where $\delta = 0$ if A = M and 1 otherwise.
- Output if A = M: key=v, value= $(0, u, M_{uv})$.
- Output if A = P: key=u, value= $(1, v, P_{uv})$.
- Reduce step 1: For key k :
 - Input = $(0, i, M_{ik})$ for all $1 \le i \le n$ and $(1, j, P_{kj})$ for all $1 \le j \le p$.
 - Return $((i,j),M_{ik}P_{kj})$ for all $1 \leq i \leq n$ and $1 \leq j \leq p$.
- Map step 2: Identity.
- Reduce step 2: For key (i, j), sum all values and return.

Data flow

- Input data and final output are stored on a distributed file system (DFS).
 - The **scheduler** manages to schedule Map tasks near the physical location of the input data they need.
- Intermediate results are stored on local file systems of Map and Reduce workers.
- MapReduce operations can be **stacked**: the Reduce output becomes the input to a new Map task (as in our second matrix-matrix multiplication example).

The master node

- The master node takes care of coordination:
 - Tracking task status: idle / in progress / completed.
 - Scheduling idle tasks when workers become available.
 - Upon task completion: receiving (from worker) the location and size of the intermediate files (to be sent to reducers).
 - Pushing info to reducers:
 - **Grouping** tasks per key. Hash keys into R buckets ⇒ create R files.
 - Detecting failure.

Dealing with failures

- Master node periodically pings workers to detect whether they're still up.
- Map worker failure:
 - Outputs of Map tasks already executed by this worker are unavailable.
 - Map tasks completed/in progress at worker are reset to idle.
- Reduce worker failure:

Reduce tasks in progress are reset to idle.

– Master failure:

The whole MapReduce operation is aborted with notification.

Number of Map and Reduce tasks

– M Map tasks:

- M much larger than the number of nodes in the cluster.
- One DFS chunk per Map task.
 Better dynamic load balancing and recovery from worker failures.

– R Reduce tasks:

- If R is large:
 - More final output files.
 - Skew: different processing times for different Reduce tasks.
 Due to differences in value list length.
 Running several Reduce tasks at the same node averages out these differences.
- If R is too small:
 - The amount of data that each reducer must process may become too large.

Backup tasks

- Problem: slow workers significantly increase job completion time.
 - Other jobs running on the same machine.
 - Bad disks.
 - Weird things.
- Solution: spawn backup copies of tasks.
 - Near end of phase.
 - Once one of the copies finishes, stop all of them.

Combiners

- When Map tasks produce many key-value pairs for the same key
 E.g. word counting.
- Combiner: pre-aggregates values in the mapper.
 - Combine $\{(k, v_1), (k, v_2), \dots, (k, v_m)\}$ in a unique (k, v).
 - Combiner is usually the same as the Reduce function.
 E.q. word counting: combiner sums values.
 - The Reduce function must be commutative and associative.
 - Save **communication cost**: less data needs to be copied and shuffled.

2.3 Algorithmic costs

- Communication cost: total input/output of all processes:
 - input file (= input to all Map tasks).
 - 2 x sum of all files communicated from Map processes to Reduce processes (= output of all Map tasks + input to all Reduce tasks).
 - sum of all Reduce output files (= output of all Reduce tasks).
- Elapsed communication cost: maximum input/output along any path
 wall-clock time.
 - largest input+output files for any Map process.
 - largest input+output files for any Reduce process.
- Computation cost: total runtime of all processes.
- Elapsed computation cost: maximum runtime.
- Typically, one of the communication and the computation costs dominates.

2.4 Complexity Theory

- Studying the balance between communication and computation costs.
- Reducer size q: Upper bound on the number of values that can be associated with a single key.

Small reducer size:

- many reducers;
- high degree of parallelism;
- low computation cost,
 especially if the Reduce tasks can be executed in main memory.
- Replication rate r : Number of key-value pairs per input.
 Average communication cost from Map tasks to Reduce tasks.

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \textstyle \sum_{k=1}^n M_{ik} P_{kj}.$$

- Map step: $M_{ik} \mapsto \{((i,j),(k,M_{ik}))\}_{j=1,2,\dots,n}.$ $P_{kj} \mapsto \{((i,j),(k,P_{kj}))\}_{i=1,2,\dots,n}.$
- **Reduce step:** $(i, j) \mapsto$ sum of pairwise products.
- Reducer size q: Upper bound on the number of values that can be associated with a single key.

Replication rate r : Number of key-value pairs per input.

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \sum_{k=1}^n M_{ik} P_{kj}.$$

- Map step: $M_{ik} \mapsto \{((i,j),(k,M_{ik}))\}_{j=1,2,\dots,n}.$ $P_{kj} \mapsto \{((i,j),(k,P_{kj}))\}_{i=1,2,\dots,n}.$
- **Reduce step:** $(i, j) \mapsto$ sum of pairwise products.
- Reducer size q: Upper bound on the number of values that can be associated with a single key.

Replication rate r : Number of key-value pairs per input.

Here: n key-value pairs are created per input element.

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \textstyle \sum_{k=1}^n M_{ik} P_{kj}.$$

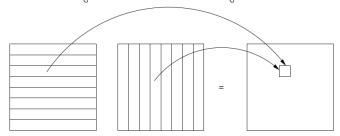
- Map step: $M_{ik} \mapsto \{((i,j),(k,M_{ik}))\}_{j=1,2,\dots,n}.$ $P_{kj} \mapsto \{((i,j),(k,P_{kj}))\}_{i=1,2,\dots,n}.$
- **Reduce step:** $(i, j) \mapsto$ sum of pairwise products.
- Reducer size q: Upper bound on the number of values that can be associated with a single key.

Here: Each key (i, j) is associated with 2n values.

Replication rate r : Number of key-value pairs per input.

Here: n key-value pairs are created per input element.

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \textstyle \sum_{k=1}^n M_{ik} P_{kj}.$$



- Map step: $M_{ik}\mapsto (g_M(i),g_P):(i,k,M_{ik})$ for $g_P=1,2,\ldots,G$. $P_{kj}\mapsto (g_M,g_P(j)):(k,j,P_{kj})$ for $g_M=1,2,\ldots,G$.
- Reduce step: $(g_M, g_P) \mapsto (i, j) : \sum_{k=1}^m M_{ik} P_{kj}$ for all $i \in g_M$ and $j \in g_P$.

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \sum_{k=1}^n M_{ik} P_{kj}.$$

- Map step: $M_{ik}\mapsto (g_M(i),g_P):(i,k,M_{ik})$ for $g_P=1,2,\ldots,G$. $P_{kj}\mapsto (g_M,g_P(j)):(k,j,P_{kj})$ for $g_M=1,2,\ldots,G$.
- Reduce step: $(g_M, g_P) \mapsto (i, j) : \sum_{k=1}^m M_{ik} P_{kj}$ for all $i \in g_M$ and $j \in g_P$.

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \sum_{k=1}^n M_{ik} P_{kj}.$$

- Map step: $M_{ik}\mapsto (g_M(i),g_P):(i,k,M_{ik})$ for $g_P=1,2,\ldots,G$. $P_{kj}\mapsto (g_M,g_P(j)):(k,j,P_{kj})$ for $g_M=1,2,\ldots,G$.
- Reduce step: $(g_M, g_P) \mapsto (i, j) : \sum_{k=1}^m M_{ik} P_{kj}$ for all $i \in g_M$ and $j \in g_P$.
- Reducer size:

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \textstyle \sum_{k=1}^n M_{ik} P_{kj}.$$

- Map step: $M_{ik}\mapsto (g_M(i),g_P):(i,k,M_{ik})$ for $g_P=1,2,\ldots,G$. $P_{kj}\mapsto (g_M,g_P(j)):(k,j,P_{kj})$ for $g_M=1,2,\ldots,G$.
- Reduce step: $(g_M, g_P) \mapsto (i, j) : \sum_{k=1}^m M_{ik} P_{kj}$ for all $i \in g_M$ and $j \in g_P$.
- Reducer size:

$$q = \underbrace{\begin{pmatrix} \text{cols} & \text{rows} \\ \hline n & \times & \overline{G} \end{pmatrix}}_{\text{from P}} + \underbrace{\begin{pmatrix} n \times \frac{n}{G} \end{pmatrix}}_{\text{from P}} = \frac{2n^2}{G}.$$

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \textstyle \sum_{k=1}^n M_{ik} P_{kj}.$$

Idea: Reduce communication by grouping inputs: divide M in G bands of $\frac{n}{G}$ rows each; P in G bands of $\frac{n}{G}$ columns each.

- Map step: $M_{ik} \mapsto (g_M(i), g_P) : (i, k, M_{ik})$ for $g_P = 1, 2, \dots, G$. $P_{kj} \mapsto (g_M, g_P(j)) : (k, j, P_{kj})$ for $g_M = 1, 2, \dots, G$.
- Reduce step: $(g_M, g_P) \mapsto (i, j) : \sum_{k=1}^m M_{ik} P_{kj}$ for all $i \in g_M$ and $j \in g_P$.
- Reducer size:

$$q = \underbrace{\begin{pmatrix} \text{cols} & \text{rows} \\ \hline n & \times & \overline{G} \end{pmatrix}}_{\text{from P}} + \underbrace{\begin{pmatrix} n \times \frac{n}{G} \end{pmatrix}}_{\text{from P}} = \frac{2n^2}{G}.$$

– Replication rate:

$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \textstyle \sum_{k=1}^n M_{ik} P_{kj}.$$

Idea: Reduce communication by grouping inputs: divide M in G bands of $\frac{n}{G}$ rows each; P in G bands of $\frac{n}{G}$ columns each.

- Map step: $M_{ik} \mapsto (g_M(i), g_P) : (i, k, M_{ik})$ for $g_P = 1, 2, \dots, G$. $P_{kj} \mapsto (g_M, g_P(j)) : (k, j, P_{kj})$ for $g_M = 1, 2, \dots, G$.
- Reduce step: $(g_M, g_P) \mapsto (i, j) : \sum_{k=1}^m M_{ik} P_{kj}$ for all $i \in g_M$ and $j \in g_P$.
- Reducer size:

$$q = \underbrace{\begin{pmatrix} \text{cols} & \text{rows} \\ \hline n & \times & \overline{G} \end{pmatrix}}_{\text{from P}} + \underbrace{\begin{pmatrix} n \times \frac{n}{G} \end{pmatrix}}_{\text{from P}} = \frac{2n^2}{G}.$$

- **Replication rate:** r = G.

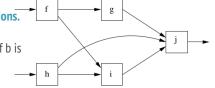
$$M \in \mathbb{R}^{n \times n}, P \in \mathbb{R}^{n \times n}. \qquad \text{Goal: compute } Q_{ij} = \sum_{k=1}^m M_{ik} P_{kj}.$$

- Reducer size: $q = \frac{2n^2}{G}$.
- Replication rate: r = G.
- Consistent with previous results when G = n.
- $r = \frac{2n^2}{q}$: the replication rate varies inversely with the reducer size.
- Two-pass matrix-matrix multiplication: see Chapter 2.6.7 of Mining of Massive Datasets.

2.5 Extensions to MapReduce

Workflow Systems:

- Generalize the concept of a cascade of functions.
- MapReduce: two-step workflow.
- Flow graph: arc a → b indicates the input of b is the output of a.

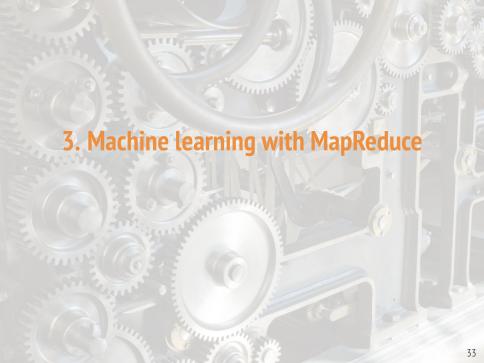


– Spark:

- copes more efficiently with failures.
- groups tasks more efficiently.
- integrates loops and function libraries.

TensorFlow:

- Similar to Spark.
- Data is arranged in tensors = multi-dimensional matrices.
- Specifically designed for machine learning.



Overall principle

Many machine learning algorithms rely heavily on:

Overall principle

- Many machine learning algorithms rely heavily on:
 - matrix-vector multiplication;
 - matrix-matrix multiplications.

Overall principle

- Many machine learning algorithms rely heavily on:
 - matrix-vector multiplication;
 - matrix-matrix multiplications.
- Many machine learning algorithms can be written in summation form: computations can be expressed as sums over data points.

n observations in p dimensions: $X \in \mathbb{R}^{n \times p}$. n labels: $\vec{y} \in \mathbb{R}^n$. Suppose n large and p small.

Linear regression: Solve

n observations in p dimensions: $X \in \mathbb{R}^{n \times p}$. n labels: $\vec{y} \in \mathbb{R}^n$. Suppose n large and p small.

– Linear regression: Solve $\arg\min_{\vec{w}\in\mathbb{R}^p}\sum_{i=1}^n\left(\vec{w}^\top\vec{x}_i-y_i\right)^2.$

n observations in p dimensions: $X \in \mathbb{R}^{n \times p}$. n labels: $\vec{y} \in \mathbb{R}^n$. Suppose n large and p small.

- Linear regression: Solve

$$\text{arg} \min_{\vec{W} \in \mathbb{R}^p} \sum_{i=1}^n \left(\vec{W}^\top \vec{X}_i - y_i \right)^2.$$

- Exact solution:

n observations in p dimensions: $X \in \mathbb{R}^{n \times p}$. n labels: $\vec{y} \in \mathbb{R}^n$. Suppose n large and p small.

Linear regression: Solve

$$\text{arg} \min_{\vec{W} \in \mathbb{R}^p} \sum_{i=1}^n \left(\vec{W}^\top \vec{X}_i - y_i \right)^2.$$

- Exact solution: $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$.

n observations in p dimensions: $X \in \mathbb{R}^{n \times p}$. n labels: $\vec{y} \in \mathbb{R}^n$. Suppose n large and p small.

– Linear regression: Solve

$$\text{arg} \min_{\vec{W} \in \mathbb{R}^p} \sum_{i=1}^n \left(\vec{W}^\top \vec{X}_i - y_i \right)^2.$$

- Exact solution: $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$.
- Computationally costly operations:

n observations in p dimensions: $X \in \mathbb{R}^{n \times p}$. n labels: $\vec{v} \in \mathbb{R}^n$. Suppose n large and p small.

Linear regression: Solve

$$\text{arg} \min_{\vec{W} \in \mathbb{R}^p} \sum_{i=1}^n \left(\vec{W}^\top \vec{X}_i - y_i \right)^2.$$

- Exact solution: $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$.
- Computationally **costly** operations:
 - $\begin{array}{lll} \textbf{-} & \text{Computing X}^\top X & \text{summation form: } \sum_{i=1}^n \vec{x}_i \vec{x}_i^\top. \\ \textbf{-} & \text{Computing X}^\top y & \text{summation form: } \sum_{i=1}^n \vec{x}_i y_i. \end{array}$

 - The matrix inversion is not a problem because p is small.

Ridge regularization

$$J(\vec{w}) = \ell(y_i f_{\vec{w}}(x_i)) + \lambda \vec{w}^\top \vec{w}.$$

- Examples of loss ℓ :
 - Logistic regression: $\ell(u) = \log(1 + \exp(-u))$.
 - Ridge regression: $\ell(u) = (1 u)^2$.
 - Support vector machines: $\ell(u) = \max(1 u, 0)$.
- Newton-Raphson: $\vec{w} \leftarrow \vec{w} \left[\nabla^2_{\vec{w}} J(\vec{w})\right]^{-1} \nabla_{\vec{w}} J(\vec{w}).$
- The gradients and Hessian can be written in summation form.

Other algorithms

PCA

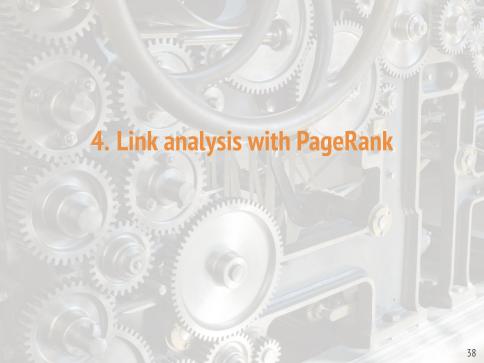
Compute the principal eigenvectors of the covariance matrix

$$\Sigma = \frac{1}{\mathsf{n}}(\mathsf{X} - \vec{\mu})^{\top}(\mathsf{X} - \vec{\mu}).$$

- $\vec{\mu} = \frac{1}{n} \sum_{i=1}^{n} \vec{x}_i \vec{x}_i^{\top}$.
- Σ has small dimension.

k-means

- Computing cluster assignment: arg $\min_{c \in \{1,...,k\}} ||\vec{x}_i \vec{\mu}_c||.$
- Computing centroids: $\vec{\mu}_c = \frac{1}{|C_c|} \sum_{j:C_j=i} \vec{X}_j$.



Link analysis: searching the web

- The web = directed graph of nodes (webpages) connected by directed edges (hyperlinks).
- Other examples:
 - Media networks:

Connections between political blogs, Facebook communities, newspaper articles.

Information networks:

Citation networks. Internet.

- Technical networks:

Highways, seven bridges of Königsberg.

- Biological networks:

Systems biology organizes knowledge about biomolecules (genes, proteins, etc.) in networks

- How to organize the web?
 - Web directories.
 - Web search.

Web search

Challenges:

- Trust: the web contains many sources of information including spam.
- What is the **best** answer to the web query "machine learning"?
 No single right answer
- Idea: Good pages about machine learning might all be pointing to many relevant pages, and conversely.

Web search

Challenges:

- Trust: the web contains many sources of information including spam.
- What is the **best** answer to the web query "machine learning"?
 No single right answer
- Idea: Good pages about machine learning might all be pointing to many relevant pages, and conversely.
 - ⇒ Use **link structure** to rank pages.
- Use links as votes: a page is more important if it has more incoming links.
- Are all links equally important?

Web search

Challenges:

- Trust: the web contains many sources of information including spam.
- What is the **best** answer to the web query "machine learning"?
 No single right answer
- Idea: Good pages about machine learning might all be pointing to many relevant pages, and conversely.
 - ⇒ Use **link structure** to rank pages.
- Use links as votes: a page is more important if it has more incoming links.
- Are all links equally important?

Links from important pages count more.

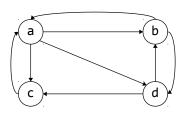
The question is **recursive**.

PageRank

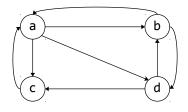
- PageRank is one of the many ingredients used by the Google search engine to rank webpages.
 - Trivia: It is named after Larry Page, and not webpages.
- Recursive formulation:
 - Each link's vote is proportional to the importance of its source page:
 - If page j with importance r_i has d_i out-links, each link gets r_i/d_i votes
 - Importance of page i :

$$r_i = \sum_{j: j \to i \in \mathcal{E}} \frac{r_j}{d_j}.$$

$$r_i = \sum_{j: j \to i \in \mathcal{E}} \frac{r_j}{d_j}$$



$$r_i = \sum_{j: j \to i \in \mathcal{E}} \frac{r_j}{d_j}$$



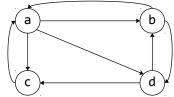
Equations:

- $$\begin{split} &- \quad r_a = \frac{r_b}{2} + r_c. \\ &- \quad r_b = \frac{r_a}{3} + \frac{r_d}{2}. \\ &- \quad r_c = \frac{r_a}{3} + \frac{r_d}{2}. \\ &- \quad r_d = \frac{r_a}{3} + \frac{r_b}{2}. \end{split}$$

$$r_i = \sum_{j: j \to i \in \mathcal{E}} \frac{r_j}{d_j}$$

Equations:

- $r_a = \frac{r_b}{2} + r_c$.
- $r_b = \frac{r_a}{3} + \frac{r_d}{2}.$ $r_c = \frac{r_a}{3} + \frac{r_d}{2}.$ $r_d = \frac{r_a}{3} + \frac{r_b}{2}.$



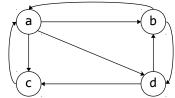
4 equations, 4 unknowns, no constants.

No unique solution: all solutions are equivalent modulo a scale factor.

$$r_i = \sum_{j: j \to i \in \mathcal{E}} \frac{r_j}{d_j}$$

Equations:

- $r_a = \frac{r_b}{2} + r_c$.
- $r_b = \frac{r_a}{3} + \frac{r_d}{2}.$ $r_c = \frac{r_a}{3} + \frac{r_d}{2}.$ $r_d = \frac{r_a}{3} + \frac{r_b}{2}.$



4 equations, 4 unknowns, no constants.

No unique solution: all solutions are equivalent modulo a scale factor.

Additional constraint for uniqueness:

$$\sum_i r_i = 1.$$

$$r_i = \sum_{j: j \to i \in \mathcal{E}} \frac{r_j}{d_j}$$

Equations:

$$- r_a = \frac{r_b}{2} + r_c.$$

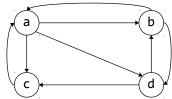
$$- r_b = \frac{1a}{3} + \frac{10}{2}$$
.

$$- r_b = \frac{r_a}{3} + \frac{r_d}{2}.$$

$$- r_c = \frac{r_a}{3} + \frac{r_d}{2}.$$

$$- r_d = \frac{r_a}{3} + \frac{r_b}{2}.$$

$$- r_d = \frac{r_a}{3} + \frac{r_b}{2}$$
.



4 equations, 4 unknowns, no constants.

No unique solution: all solutions are equivalent modulo a scale factor.

Additional constraint for uniqueness:

$$\sum_{i} r_{i} = 1.$$

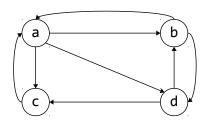
- **Solution by Gaussian elimination:**
 - $r_a = \frac{1}{3}$.
 - $r_b = r_c = r_d = \frac{2}{9}$.

Random walkers

- For **large graphs**, solving linear systems of equations is intractable.
- Random surfers: Where do you end if you follow links at random?

Random walkers

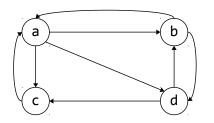
- For **large graphs**, solving linear systems of equations is intractable.
- Random surfers: Where do you end if you follow links at random?



Start at node a: after one step, end up in b, c, or d with probability $\frac{1}{3}$.

Random walkers

- For large graphs, solving linear systems of equations is intractable.
- Random surfers: Where do you end if you follow links at random?

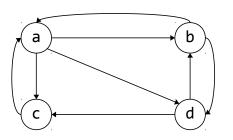


Start at node a: after one step, end up in b, c, or d with probability $\frac{1}{3}$.

– Transition matrix: $M_{ij}=\frac{1}{d_j}$ if $j\to i\in\mathcal{E}$ and 0 otherwise.

The transition matrix is **column-stochastic**: columns sum to 1.

Random walkers: Transition matrix example



$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

- Start random surfers at all pages with equal probability $\frac{1}{n}$

$$\vec{v}_0 = \left[1/n, 1/n, \dots, 1/n\right].$$

After one step, the distribution will be

- Start random surfers at all pages with equal probability $\frac{1}{n}$

$$\vec{v}_0 = \left[1/n, 1/n, \dots, 1/n\right].$$

- After one step, the distribution will be

$$\vec{v}_1 = M \vec{v}_0.$$

– Start random surfers at all pages with equal probability $\frac{1}{n}$

$$\vec{v}_0 = \left[1/n, 1/n, \dots, 1/n\right].$$

- After one step, the distribution will be

$$\vec{v}_1 = M \vec{v}_0.$$

- After k steps:

$$\vec{v}_k = M^k \vec{v}_0.$$

– Start random surfers at all pages with equal probability $\frac{1}{n}$

$$\vec{v}_0 = \left[1/n, 1/n, \dots, 1/n\right].$$

- After one step, the distribution will be

$$\vec{v}_1 = M \vec{v}_0.$$

- After k steps:

$$\vec{v}_k = M^k \vec{v}_0.$$

- Markov process: The distribution approaches a limiting distribution \vec{v} such that $\vec{v} = M\vec{v}$ if
 - The graph is strongly connected: can get from a node to any other node.
 - No dead ends: nodes that have no out-links.

```
\vec{v} = M\vec{v}.
```

- Surfers are **stationary**.
- The more important a page, and the more likely it is to have a surfer.
- $-\vec{v}$ is ... of M.

$$\vec{v} = M\vec{v}$$
.

- Surfers are **stationary**.
- The more important a page, and the more likely it is to have a surfer.
- $-\vec{v}$ is **the principal eigenvector** of M.

$$\vec{v} = M\vec{v}$$
.

- Surfers are stationary.
- The more important a page, and the more likely it is to have a surfer.
- $-\vec{v}$ is **the principal eigenvector** of M. (M stochastic has largest eigenval 1.)

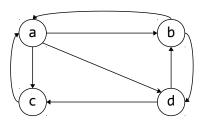
$$\vec{v} = M\vec{v}$$
.

- Surfers are **stationary**.
- The more important a page, and the more likely it is to have a surfer.
- $-\vec{v}$ is **the principal eigenvector** of M. (M stochastic has largest eigenval 1.)
- Power iteration: compute v by iterative matrix-vector multiplications.
 - Stop when $||\vec{v}_t \vec{v}_{t-1}|| \le \epsilon$.
 - How eigenvectors are computed in large dimensions (eg. Lanczos method.)
 - Amenable to

$$\vec{v} = M\vec{v}$$
.

- Surfers are **stationary**.
- The more important a page, and the more likely it is to have a surfer.
- $-\vec{v}$ is **the principal eigenvector** of M. (M stochastic has largest eigenval 1.)
- Power iteration: compute v by iterative matrix-vector multiplications.
 - Stop when $||\vec{v}_t \vec{v}_{t-1}|| \le \epsilon$.
 - How eigenvectors are computed in large dimensions (eg. Lanczos method.)
 - Amenable to MapReduce parallelization.
- Equivalent to previous PageRank formulation:

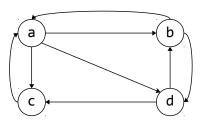
$$v_i = \sum_{j: j \to i \in \mathcal{E}} \frac{v_j}{d_j}$$



Transition matrix:

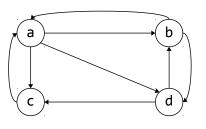
$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

- Initialization: $\vec{v}_0 = [1/4, 1/4, 1/4, 1/4]$.



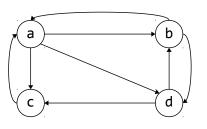
$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

- Initialization: $\vec{v}_0 = [1/4, 1/4, 1/4, 1/4]$.
- After one step: $\vec{v}_1 = [9/24, 5/24, 5/24, 5/24]$.



$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

- Initialization: $\vec{v}_0 = [1/4, 1/4, 1/4, 1/4]$.
- After one step: $\vec{v}_1 = [9/24, 5/24, 5/24, 5/24]$.
- After two steps: $\vec{v}_2 = [15/48, 11/48, 11/48, 11/48]$.



Transition matrix:

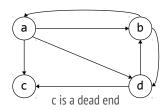
$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

- Initialization: $\vec{v}_0 = [1/4, 1/4, 1/4, 1/4]$.
- After one step: $\vec{v}_1 = [9/24, 5/24, 5/24, 5/24]$.
- After two steps: $\vec{v}_2 = [15/48,\,11/48,\,11/48,\,11/48]$.

. . .

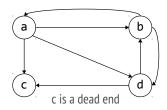
- Converges to: $\vec{v} = [1/3, 2/9, 2/9, 2/9]$.

Dead ends: nodes that have no out-links.



$$\begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

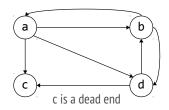
Dead ends: nodes that have no out-links.



$$\begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

- The transition matrix does not have full rank.
- It cannot be inverted, i.e. our linear system of equations has no solution.
- The power method converges to

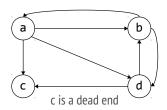
Dead ends: nodes that have no out-links.



$$\begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

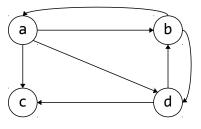
- The transition matrix does not have full rank.
- It cannot be inverted, i.e. our linear system of equations has no solution.
- The **power method** converges to $\vec{v} = \vec{0}$.

Dead ends: nodes that have no out-links.



$$\begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

- The transition matrix does not have full rank.
- It cannot be inverted, i.e. our linear system of equations has no solution.
- The **power method** converges to $\vec{v} = \vec{0}$.
- Solutions:
 - Recursively remove dead ends and their incoming links.
 - When at a dead end, teleport (with equal probability) to another node.



Transition matrix:

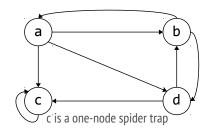
$$\begin{bmatrix} 0 & 1/2 & \mathbf{0} & 0 \\ 1/3 & 0 & \mathbf{0} & 1/2 \\ 1/3 & 0 & \mathbf{0} & 1/2 \\ 1/3 & 1/2 & \mathbf{0} & 0 \end{bmatrix}$$

– New transition matrix:

$$\begin{bmatrix} 0 & 1/2 & 1/4 & 0 \\ 1/3 & 0 & 1/4 & 1/2 \\ 1/3 & 0 & 1/4 & 1/2 \\ 1/3 & 1/2 & 1/4 & 0 \end{bmatrix}$$

- Eventually, $\vec{v} = [1/5, 4/15, 4/15, 4/15]$.

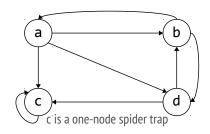
- Spider trap: set of nodes with no dead ends but no links out.
- Problem:



 Spider trap: set of nodes with no dead ends but no links out.

- Problem:

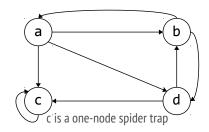
All random surfers end up in the spider trap.



 Spider trap: set of nodes with no dead ends but no links out.

- Problem:

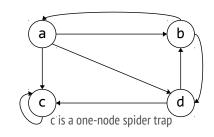
All random surfers end up in the spider trap.



 Spider trap: set of nodes with no dead ends but no links out.

- Problem:

All random surfers end up in the spider trap.

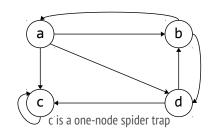


$$\begin{bmatrix} 0 & 1/2 & \mathbf{0} & 0 \\ 1/3 & 0 & \mathbf{0} & 1/2 \\ 1/3 & 0 & \mathbf{1} & 1/2 \\ 1/3 & 1/2 & \mathbf{0} & 0 \end{bmatrix}$$

 Spider trap: set of nodes with no dead ends but no links out.

- Problem:

All random surfers end up in the spider trap.



- Transition matrix:

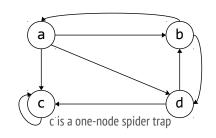
$$\begin{bmatrix} 0 & 1/2 & \mathbf{0} & 0 \\ 1/3 & 0 & \mathbf{0} & 1/2 \\ 1/3 & 0 & \mathbf{1} & 1/2 \\ 1/3 & 1/2 & \mathbf{0} & 0 \end{bmatrix}$$

v converges to

 Spider trap: set of nodes with no dead ends but no links out.

- Problem:

All random surfers end up in the spider trap.



- Transition matrix:

$$\begin{bmatrix} 0 & 1/2 & \mathbf{0} & 0 \\ 1/3 & 0 & \mathbf{0} & 1/2 \\ 1/3 & 0 & \mathbf{1} & 1/2 \\ 1/3 & 1/2 & \mathbf{0} & 0 \end{bmatrix}$$

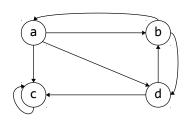
- \vec{v} converges to $\vec{v} = [0, 0, 1, 0]$.

Taxation

- How to get out of spider traps?
 - A random surfer can **leave the graph** at any moment.
 - New surfers can be started at any page at any moment.
- Taxation: Allow each random surfer a probability $1-\beta$ of teleporting to a random page

$$\vec{\mathbf{v}} = \beta \mathbf{M} \vec{\mathbf{v}} + \frac{(1-\beta)}{\mathsf{n}} \vec{\mathbf{1}}.$$

Typically, $\beta \in [0.8 - 0.9]$.



$$\begin{bmatrix} 0 & 1/2 & \mathbf{0} & 0 \\ 1/3 & 0 & \mathbf{0} & 1/2 \\ 1/3 & 0 & \mathbf{1} & 1/2 \\ 1/3 & 1/2 & \mathbf{0} & 0 \end{bmatrix}$$

$$\vec{\mathbf{v}} = \beta \mathbf{M} \vec{\mathbf{v}} + \frac{(1-\beta)}{\mathsf{n}} \vec{\mathbf{1}}$$

$$-\beta = 0.8 = 4/5$$

$$\vec{v} = \begin{bmatrix} 0 & 2/5 & 0 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 4/5 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{bmatrix} \vec{v} + \begin{bmatrix} 1/20 \\ 1/20 \\ 1/20 \\ 1/20 \\ 1/20 \end{bmatrix}, \quad \vec{v}_0 = \begin{bmatrix} \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \end{bmatrix}.$$

- Solution:
$$\vec{v} = \begin{bmatrix} \frac{15}{148}, \frac{19}{148}, \frac{95}{148}, \frac{19}{148} \end{bmatrix}$$
.

Summary

- Large-scale data poses new technical problems for:
 - storage ⇒ distributed file systems.
 - computations ⇒ MapReduce programming model.
 - Split the data in chunks.
 - Map workers all execute the same operation on a chunk and return a key-val pair.
 - Reduce workers process all key-val pairs with the same key at once.
- Algorithmic costs of MapReduce:
 - Communication costs vs. computation costs.
 - Reducer size and replication rate.
- Extensions of MapReduce: Spark and TensorFlow.
- MapReduce for machine learning.
- Link analysis with PageRank.

References & Acknowledgements

- These slides are mostly inspired from:
 - The book and slides of J. Leskovec, A. Rajaraman, and J. Ullman, Mining of Massive Datasets. http://www.mmds.org
 - C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng and K. Olukotun, Map-reduce for machine learning on multicore. NeurIPS 2007.
- To learn more you can refer to (clickable links!):
 - J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
 - S. Ghemawat, H. Gobioff, and S.-T. Leung. **The Google File System.**
 - The Hadoop Wiki.
 - http://www.worldwidewebsize.com/
 - Scaling the Facebook data warehouse to 300 PB.