
9. Tree-based approaches

Foundations of Machine Learning
CentraleSupélec — Fall 2017

Chloé-Agathe Azencot
Centre for Computational Biology, Mines ParisTech

chloe-agathe.azencott@mines-paristech.fr

9. Tree-based approaches

Foundations of Machine Learning
CentraleSupélec — Fall 2017

Chloé-Agathe Azencot
Centre for Computational Biology, Mines ParisTech

chloe-agathe.azencott@mines-paristech.fr

Learning objectives

● Build decision trees:
– Decide how to grow a tree
– Decide when to stop growing a tree

● Explain why they are examples of non-metric
learning and hierarchical learning.

● Combine decision trees (or other weak learners) to
make more powerful classifiers.

Learning objectives

● Build decision trees:
– Decide how to grow a tree
– Decide when to stop growing a tree

● Explain why they are examples of non-metric
learning and hierarchical learning.

● Combine decision trees (or other weak learners) to
make more powerful classifiers.

Hierarchical learning

● Single-stage classifiers:
– Assign a class to object x using a single operation.
– Use a single set of features for all classes.
– Difficulties:

- when classes have multi-modal distributions
- when features are nominal.

● Hierarchical classifiers:
Multiple successive tests.

Decision trees

Hierarchical learning

● Single-stage classifiers:
– Assign a class to object x using a single operation.
– Use a single set of features for all classes.
– Difficulties:

- when classes have multi-modal distributions
- when features are nominal.

● Hierarchical classifiers:
Multiple successive tests.

Decision trees

Nominal data
● Attributes that are

– Discrete
– Without any natural notion of similarity/ordering

 → Non-metric learning.
● Example:

Classify fruit from {color, shape, texture, size}.

Nominal data
● Attributes that are

– Discrete
– Without any natural notion of similarity/ordering

 → Non-metric learning.
● Example:

Classify fruit from {color, shape, texture, size}.

Decision trees: The 20Q game

Color?

redgreen yellow

Size? Shape? Size?

small big

grape watermelon

round curved

apple banana

mediumsmall

appleShape?

round pointy

cherry strawberry

Decision trees: The 20Q game

Color?

redgreen yellow

Size? Shape? Size?

small big

grape watermelon

round curved

apple banana

mediumsmall

appleShape?

round pointy

cherry strawberry

Multiclass classification
● One-versus-all

Build K classifiers, make them vote.
● One-versus-one

Build K (K-1) / 2 classifiers, make them vote.
● Use an algorithm that naturally handles multiple

classes.
– Decision trees and their variants
– Neural networks (Chap. 11)

Multiclass classification
● One-versus-all

Build K classifiers, make them vote.
● One-versus-one

Build K (K-1) / 2 classifiers, make them vote.
● Use an algorithm that naturally handles multiple

classes.
– Decision trees and their variants
– Neural networks (Chap. 11)

Decision trees: The 20Q game

root

leaf

nodeparent of

children of

Decision trees: The 20Q game

root

leaf

nodeparent of

children of

Partition of the feature space

● Classification:
cm =

● Regression:
cm =

indicator

Partition of the feature space

● Classification:
cm =

● Regression:
cm =

indicator

● A decision tree is a recursive partition of the
training set into smaller and smaller subsets.

● Purity: a node is pure if all samples at that node
have the same class label.

● CART: Classification And Regression Trees
Recursive procedure to split a training set and organize
it into a tree.

● A decision tree is a recursive partition of the
training set into smaller and smaller subsets.

● Purity: a node is pure if all samples at that node
have the same class label.

● CART: Classification And Regression Trees
Recursive procedure to split a training set and organize
it into a tree.

CART: Design choices

● Binary or multi-way splits?
● Which feature(s) to use at each node?

i.e. how to split?
● When to stop growing a tree?

CART: Design choices

● Binary or multi-way splits?
● Which feature(s) to use at each node?

i.e. how to split?
● When to stop growing a tree?

Binary & multi-value splits
A tree with arbitrary branching factor can always be
equivalently represented by a binary tree.

Find a binary tree that's equivalent to:

Binary & multi-value splits
A tree with arbitrary branching factor can always be
equivalently represented by a binary tree.

Find a binary tree that's equivalent to:

How to grow a tree
● Monothetic trees

– Use 1 feature per node
– The decision boundary is

How to grow a tree
● Monothetic trees

– Use 1 feature per node
– The decision boundary is

● Splitting variable (j) and splitting point (s) define 2
regions:

j, s

● Regression tree: choose j and s to minimize SE:

● Splitting variable (j) and splitting point (s) define 2
regions:

j, s

● Regression tree: choose j and s to minimize SE:

● Classification tree: choose j and s to minimize
impurity.

● Greedy algorithm / local optimization.

● Classification tree: choose j and s to maximize the
drop in impurity.

● Impurity:
– Classification error
– Entropy
– Gini impurity.

● Classification tree: choose j and s to minimize
impurity.

● Greedy algorithm / local optimization.

● Classification tree: choose j and s to maximize the
drop in impurity.

● Impurity:
– Classification error
– Entropy
– Gini impurity.

Impurity: Classification error
● Minimum probability that a training point will be

misclassified at node (s,j)

proportion of training
instances from class k in Rm

● If all examples from one class belong to Rm, then
Imp(Rm) =

● If we have 2 balanced classes, and instances are
randomly split at (s, j), then Imp(Rm) =

Impurity: Classification error
● Minimum probability that a training point will be

misclassified at node (s,j)

proportion of training
instances from class k in Rm

● If all examples from one class belong to Rm, then
Imp(Rm) =

● If we have 2 balanced classes, and instances are
randomly split at (s, j), then Imp(Rm) =

Impurity: Entropy
● Information theory: Shannon's entropy

proportion of training
instances from class k in Rm

● If all examples from one class belong to Rm, then
Imp(Rm) =

● If we have 2 balanced classes, and instances are
randomly split at (s, j), then Imp(Rm) =

Impurity: Entropy
● Information theory: Shannon's entropy

proportion of training
instances from class k in Rm

● If all examples from one class belong to Rm, then
Imp(Rm) =

● If we have 2 balanced classes, and instances are
randomly split at (s, j), then Imp(Rm) =

Gini impurity
proportion of training
instances from class k in Rm

● If all examples from one class belong to Rm, then
Imp(Rm) =

● If we have 2 balanced classes, and instances are
randomly split at (s, j), then Imp(Rm) =

Gini impurity
proportion of training
instances from class k in Rm

● If all examples from one class belong to Rm, then
Imp(Rm) =

● If we have 2 balanced classes, and instances are
randomly split at (s, j), then Imp(Rm) =

Gini impurity

● If the split respects the overall distribution:
● All regions are identically distributed and have Gini impurity:

● If the dataset is balanced
then

Gini impurity

● If the split respects the overall distribution:
● All regions are identically distributed and have Gini impurity:

● If the dataset is balanced
then

Gini impurity (K=2)

j, s

Gini impurity (K=2)

j, s

When to stop growing a tree
● Large tree might overfit
● Small tree might underfit
● Strategy:

– grow the tree until a minimum node size (# training
points in the region) is reached;

– prune the tree: cost-complexity pruning.

When to stop growing a tree
● Large tree might overfit
● Small tree might underfit
● Strategy:

– grow the tree until a minimum node size (# training
points in the region) is reached;

– prune the tree: cost-complexity pruning.

– prune the tree: cost-complexity pruning.

pruned tree

number of regions in T

number of training
instances in Rm Error on Rm

α: trade-off between model complexity and goodness of fit.

– prune the tree: cost-complexity pruning.

pruned tree

number of regions in T

number of training
instances in Rm Error on Rm

α: trade-off between model complexity and goodness of fit.

Advantages & drawbacks of trees
● :-) Trees are easy to explain.
● :-) Trees seem to mirror human-decision making.
● :-) Trees can be displayed graphically and easily

interpreted.
● :-) Trees can easily handle quantitative variables.
● :-) Trees naturally handle multi-class problems.

● :-(Trees generally do not have very good predictive
accuracy.

Advantages & drawbacks of trees
● :-) Trees are easy to explain.
● :-) Trees seem to mirror human-decision making.
● :-) Trees can be displayed graphically and easily

interpreted.
● :-) Trees can easily handle quantitative variables.
● :-) Trees naturally handle multi-class problems.

● :-(Trees generally do not have very good predictive
accuracy.

Building forests
● Idea: Aggregating many weak learners can

substantially increase their performance.
● Ensemble learning

Forests

Building forests
● Idea: Aggregating many weak learners can

substantially increase their performance.
● Ensemble learning

Forests

Ensemble learning
● Wisdom of crowds: Average out the uncorrelated

errors of individual classifiers.
● Example: Learn a diagonal separation from

“staircase” decision boundaries.

Ensemble learning
● Wisdom of crowds: Average out the uncorrelated

errors of individual classifiers.
● Example: Learn a diagonal separation from

“staircase” decision boundaries.

Building ensembles
● Subsample the training data

– Bagging [Breiman 1996]: bootstrap resampling
– Boosting [Schapire 1990]: resample based on

performance
● Use different features

– Multiple input representations
– Feature selection (Chap 11)

● Use different parameters of the learning algorithm.

Building ensembles
● Subsample the training data

– Bagging [Breiman 1996]: bootstrap resampling
– Boosting [Schapire 1990]: resample based on

performance
● Use different features

– Multiple input representations
– Feature selection (Chap 11)

● Use different parameters of the learning algorithm.

Combining learners
● Non-trainable combination:

– Voting (classification)
– Averaging (regression)

● Trainable combination:
– Weighted averaging: based on performance on a

validation set.
– Meta-learner: the outputs of the individual learners are

features for another learning algorithm.

Combining learners
● Non-trainable combination:

– Voting (classification)
– Averaging (regression)

● Trainable combination:
– Weighted averaging: based on performance on a

validation set.
– Meta-learner: the outputs of the individual learners are

features for another learning algorithm.

Bagging trees
● Bagging:

– Take repeated samples from the training data
(bootstrap)

– Build one predictor from each of these samples
– Final prediction: average (regression) or majority vote

(classification)

Bagging trees
● Bagging:

– Take repeated samples from the training data
(bootstrap)

– Build one predictor from each of these samples
– Final prediction: average (regression) or majority vote

(classification)

Random forests
● Similar to bagging trees
● One trick to decorrelate the trees:

Before splitting, first randomly sample q (out of p)
variables among which the one over which to split must
be chosen.
Typically q = √p.

● Very good predictive power in practice!

[Breiman 2001]

Random forests
● Similar to bagging trees
● One trick to decorrelate the trees:

Before splitting, first randomly sample q (out of p)
variables among which the one over which to split must
be chosen.
Typically q = √p.

● Very good predictive power in practice!

[Breiman 2001]

AdaBoost
● weak learners = stumps (only one split)
● Give more weight to the more difficult samples
● At iteration m:

– learn from data weighted by

– update weights:

● Final decision function:

[Schapire & Freund 1997]

such that the weights sum to 1

weighted error

exponential loss

AdaBoost
● weak learners = stumps (only one split)
● Give more weight to the more difficult samples
● At iteration m:

– learn from data weighted by

– update weights:

● Final decision function:

[Schapire & Freund 1997]

such that the weights sum to 1

weighted error

exponential loss

Gradient Boosting
● At iteration m:

– learn that minimizes a loss function for predictor

by gradient descent
– Exponential loss: equivalent to AdaBoost

– Other possible losses:
● cross-entropy:

● least-squares:

[Friedman 2001]

multiclass= logistic loss
= binomial divergence loss

Gradient Boosting
● At iteration m:

– learn that minimizes a loss function for predictor

by gradient descent
– Exponential loss: equivalent to AdaBoost

– Other possible losses:
● cross-entropy:

● least-squares:

[Friedman 2001]

multiclass= logistic loss
= binomial divergence loss

● At iteration m:
– learn that minimizes a loss function for predictor

by gradient descent
– Exponential loss: equivalent to AdaBoost

– Other possible losses:
● cross-entropy:

● least-squares:

● At iteration m:
– learn that minimizes a loss function for predictor

by gradient descent
– Exponential loss: equivalent to AdaBoost

– Other possible losses:
● cross-entropy:

● least-squares:

Summary
● Decision trees are easy to interpret.
● Decision trees elegantly deal with

– Quantitative variables
– Multiple classes
– Multimodal distributions.

● Decision trees have limited predictive power, but
this can be addressed thanks to ensemble methods
– Boosting
– Bagging
– Random forests.

Summary
● Decision trees are easy to interpret.
● Decision trees elegantly deal with

– Quantitative variables
– Multiple classes
– Multimodal distributions.

● Decision trees have limited predictive power, but
this can be addressed thanks to ensemble methods
– Boosting
– Bagging
– Random forests.

References
● A Course in Machine Learning.
http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf

– Decision trees: Chap 1.3
– Boosting : Chap 13.2
– Random forests: Chap 13.3

● The Elements of Statistical Learning.
http://web.stanford.edu/~hastie/ElemStatLearn/

– Decision trees: Chap 9.2
– Boosting: Chap 10.1 – 10.10
– Random forests: Chap 15.1 – 15.2

● A complete tutorial on tree-based modeling
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-
modeling-scratch-in-python/#ten

References
● A Course in Machine Learning.
http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf
– Decision trees: Chap 1.3
– Boosting : Chap 13.2
– Random forests: Chap 13.3

● The Elements of Statistical Learning.
http://web.stanford.edu/~hastie/ElemStatLearn/

– Decision trees: Chap 9.2
– Boosting: Chap 10.1 – 10.10
– Random forests: Chap 15.1 – 15.2

● A complete tutorial on tree-based modeling
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-
modeling-scratch-in-python/#ten

