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Learning objectives

● Build decision trees:
– Decide how to grow a tree
– Decide when to stop growing a tree

● Explain why they are examples of non-metric 
learning and hierarchical learning.

● Combine decision trees (or other weak learners) to 
make more powerful classifiers.
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Hierarchical learning

● Single-stage classifiers: 
– Assign a class to object x using a single operation.
– Use a single set of features for all classes.
– Difficulties:

- when classes have multi-modal distributions
- when features are nominal.

● Hierarchical classifiers:
Multiple successive tests.
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Nominal data
● Attributes that are

– Discrete
– Without any natural notion of similarity/ordering
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● Example:
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classes.
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– Neural networks (Chap. 11)
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● A decision tree is a recursive partition of the 
training set into smaller and smaller subsets.

● Purity: a node is pure if all samples at that node 
have the same class label.

● CART: Classification And Regression Trees
Recursive procedure to split a training set and organize 
it into a tree.
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CART: Design choices

● Binary or multi-way splits?
● Which feature(s) to use at each node?

i.e. how to split?
● When to stop growing a tree?
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● Splitting variable (j) and splitting point (s) define 2 
regions:
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When to stop growing a tree
● Large tree might overfit
● Small tree might underfit
● Strategy: 

– grow the tree until a minimum node size (# training 
points in the region) is reached;

– prune the tree: cost-complexity pruning.
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Advantages & drawbacks of trees
● :-) Trees are easy to explain.
● :-) Trees seem to mirror human-decision making.
● :-) Trees can be displayed graphically and easily 

interpreted.
● :-) Trees can easily handle quantitative variables.
● :-) Trees naturally handle multi-class problems.

● :-( Trees generally do not have very good predictive 
accuracy.
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Building ensembles
● Subsample the training data 

– Bagging [Breiman 1996]: bootstrap resampling
– Boosting [Schapire 1990]: resample based on 

performance
● Use different features

– Multiple input representations
– Feature selection (Chap 11)

● Use different parameters of the learning algorithm.
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● Non-trainable combination:
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– Weighted averaging: based on performance on a 

validation set.
– Meta-learner: the outputs of the individual learners are 

features for another learning algorithm.
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Random forests
● Similar to bagging trees
● One trick to decorrelate the trees:

Before splitting, first randomly sample q (out of p) 
variables among which the one over which to split must 
be chosen.
Typically q = √p.

● Very good predictive power in practice!

[Breiman 2001]
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AdaBoost
● weak learners = stumps (only one split)
● Give more weight to the more difficult samples
● At iteration m:

– learn       from data weighted by 

– update weights:

● Final decision function:

[Schapire & Freund 1997]

such that the weights sum to 1

weighted error

exponential loss
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Gradient Boosting
● At iteration m:

– learn       that minimizes a loss function for predictor

by gradient descent
– Exponential loss: equivalent to AdaBoost

– Other possible losses:
● cross-entropy:

● least-squares:

[Friedman 2001]
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= binomial divergence loss
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Summary
● Decision trees are easy to interpret.
● Decision trees elegantly deal with

– Quantitative variables
– Multiple classes
– Multimodal distributions.

● Decision trees have limited predictive power, but 
this can be addressed thanks to ensemble methods
– Boosting
– Bagging
– Random forests.
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