
CBIO meeting

Interpretable models with LIME and SHAP
Chloé-Agathe Azencott

Center for Computational Biology (CBIO)
Mines ParisTech – Institut Curie – INSERM U900
PSL Research University & PR[AI]RIE, Paris, France

September 29, 2021
http://cazencott.info chloe-agathe.azencott@mines-paristech.fr @cazencott

http://cazencott.info
chloe-agathe.azencott@mines-paristech.fr
http://twitter.com/cazencott


Model interpretability

Why is my model making these predictions?

— Drive scientific hypotheses

— Detect bias

— Acceptance

Doshi-Velez and Kim 2017
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Global vs local explanations

— Global explanations: How does a specific part of the model affect the predictions?

“part of the model”:
— a feature or set of features
— a training sample or set of samples
Example: coefficient in a linear model, random forest importance (see next slide)

— Local explanations: Why does the model make this prediction for a specific instance?

By extension: aggregate local explanations to understand why the model makes these
predictions for the entire dataset (or an entire class
van der Linden, Haned, and Kanoulas 2019

Lipton 2016
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Random forest feature importance

— Global explanations

— Mean Decrease in Impurity (feature_importance attribute in sklearn):

Mean decrease in impurity attributed to the feature

/ Seem to favor numerical features and categorical features with high cardinality

— Permutation importance (inspection.permutation_importance in sklearn):

Decrease in model score when the feature is randomly shuffled in the train set

, Can be used with any model!

/ Not robust to correlations between features

Breiman 2001; Louppe 2014
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Example
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Outline

Objective: Given

— training dataD = {~xi, yi}i=1,...,n, with ~xi ∈ Rp,
— a model f that has been learned onD,
— an instance ~x ∈ Rp,

find a local explanation for f(~x)

1. LIME: Local Interpretable Model-agnostic Explanations

2. Shapley values

3. SHAP
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LIME: Local Interpretable Model-agnostic Explanations
— Local surrogate model: an interpretable model g ∈ G that approximates the trained model

— Algorithm:
— Generate a labeled data setZ ofm perturbed samples:
for i = 1, . . . ,m
for j = 1, . . . , p: sample zj fromN (µj, σ

2
j ) µj, σ

2
j computed onD

label ~zi by f(~zi)

— Compute weights wi inversely proportional to ||~zi − ~x||2 wi =
√

exp(−||~zi−~x||22)
0.752 p

— Train a model from G onZ , weighting the loss of sample i by wi

arg min
g∈G

1

m

m∑
i=1

wiL(f(~zi)︸ ︷︷ ︸
true label

, g(~zi)︸︷︷︸
prediction

) + λ Ω(g)︸︷︷︸
model complexity

Ribeiro, Singh, and Guestrin 2016
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LIME with linear surrogate models

arg min
g∈G

1

m

m∑
i=1

wiL(f(~zi), g(~zi)) + λΩ(g)

becomes

arg min
~β∈Rp

1

m

m∑
i=1

wi

(
f(~zi)− 〈~β, ~zi〉

)2
+ λ

∣∣∣∣∣∣~β∣∣∣∣∣∣
1

— Set λ so as to select a user-defined number of features/explanations.

— Alternatives include decision trees (and thenΩ(g) is the number of features used + tree depth).
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LIME Example 1
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LIME Example 2
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Global explanations from LIME

— Features that explain many different instances are more important

— Given a budget ofB instances to look at:

Ij =

√√√√ B∑
i=1

|βij|

— For visualization: find a subset V of instances with greater coverage

c(V) =

p∑
j=1

Ij 1∃i∈V:|βi
j |>0

Voir aussi van der Linden, Haned, and Kanoulas 2019
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LIME Example
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Advantages and limitations of LIME

, Explanations are relatively human-friendly (few features, use an interpretable model)

, Variants specific to text and images

/ Sensitive to the definition of the neighborhood

/ Instable: explanations vary significantly in small neighborhoods) Alvarez-Melis and Jaakkola
2018
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Shapley values
— In game theory: how to assign payouts to cooperative players depending on their contribution
to the global payout

— game≡ making a prediction
— players≡ features

— global payout≡ (prediction - average prediction)
— payouts≡ feature importance

— Shapley value ϕ(j,f ,~x) of feature j to the prediction f(~x): average contribution of a
feature j to the prediction f(~x) in different coalitions (= sets of features)

— Contribution of coalition S ⊆ {1, . . . , p} to f(~x) =
(average prediction when the features in S are set to their values in ~x – average prediction)

ψ(f ,~x,S) = E[f(X1, . . . , Xp)|Xk = xk for k ∈ S]︸ ︷︷ ︸
marginalize over features not in S

−E[f(X1, . . . , Xp)]︸ ︷︷ ︸
average prediction

Shapley 1952; Owen and Prieur 2017
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Shapley values

— Contribution of coalition S ⊆ {1, . . . , p} to f(~x) =
average prediction when the features in S are set to their values in ~x – average prediction

ψ(f ,~x,S) = E[f(X1, . . . , Xp)|Xk = xk for k ∈ S]︸ ︷︷ ︸
marginalize over features not in S

−E[f(X1, . . . , Xp)]︸ ︷︷ ︸
average prediction

— Shapley value ϕ(j,f ,~x) of feature j to the prediction f(~x):

ϕ(j,f ,~x) =
∑

S⊆{1,...,p}\{j}

|S|!(p− |S| − 1)!

p!
(ψ(f ,~x,S ∪ {j})− ψ(f ,~x,S))

Shapley 1952; Owen and Prieur 2017
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Properties of Shapley values

— Efficiency: the sum of payouts is the global payout
∑p

j=1 ϕ(j,f ,~x) = f(~x)− E[f(X)]

— Symmetry: two features that contribute equally to all possible coalitions should have the same
Shapley value
if for all S ∈ {1, . . . , p} \ {j, k}, ψ(f ,~x,S ∪ {j}) = ψ(f ,~x,S ∪ {k}), then
ϕ(j,f ,~x) = ϕ(k,f ,~x)

— Dummy: a feature that does not affect predictions has a Shapley value of 0.

— Additivity: if the prediction can be decomposed in f = f1 + f2, then for all j and ~x,
ϕ(j,f , ~x) = ϕ(j, f1, ~x) + ϕ(j, f2, ~x)

→ For random forests, Shapley values are averages of the Shapley values of the individual trees.

Shapley 1952; Owen and Prieur 2017
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Computing Shapley values

ϕ(j,f ,~x) =
∑

S⊆{1,...,p}\{j}

|S|!(p− |S| − 1)!

p!
(E[f(X)|Xk = xk, k ∈ S ∪ {j}]− E[f(X)|Xk = xk, k ∈ S])

— Approximate with Monte-Carlo sampling
ϕ̂(j,f ,~x) =

1

m

m∑
i=1

f(~xi+j)− f(~xi−j)

— ~xi
+j = ~x but with p′ features, except xj , replaced with their values in another instance ofD

— ~xi
−j = ~x but with p′ features, including xj , replaced with their values in another instance ofD

x1 x2 x3 · · · xj xj+1 · · · xp

xl1 xl2 xl3 · · · xlj x
l
j+1 · · · xlp

x1 xl2 x3 · · · xj xlj+1 · · · xp

x1 xl2 x3 · · · xlj x
l
j+1 · · · xp

Štrumbelj and Kononenko 2014 16



Shapley values Example 1
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Shapley values Example 2
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Advantages and limitations of Shapley values

, Good theoretical properties

, Possibility of contrastive explanations – comparing to the average prediction over a certain
subset rather than over all data points

/ Computationally intensive

/ Interpretation is less straightforward (“the contribution of xj to the difference between the
actual prediction and the average prediction”)

/ Need access toD (unless you can draw realistic values for ~xl, l = 1, . . . ,m)
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SHAP: SHapley Additive exPlanations
— LIME: look for a simple model g that approximates f in a neighborhood of ~x

arg min
g∈G

1

|Z|
∑
~zi∈Z

wiL(f(~zi), g(~zi)) + λΩ(g)

Set
— Z = {vectors ofRp obtained by setting some of the features of ~x to 0}
— wi = (p−1)

( p

||~zi||0
)||~zi||0(p−||~zi||0)

||~z||0 = S~z = number of non-zero entries of ~z

— L(f(~z), g(~z)) = (E[f(X)|Xk = xk for k ∈ S~z]− g(~z))2

— Ω(g) = 0
— g(~z) =

∑
j∈S~z φj(~x) + φ0(~x) (g is additive)

Then φj(~x) coincides with the Shapley value ϕ(j,f ,~x) LIME+kernelSHAP

Lundberg and Lee 2017
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SHAP: SHapley Additive exPlanations
— SHAP explanations: surrogate models built additively from Shapley values

g(~z) =

p∑
j=1

1~zj 6=0 ϕ(j,f ,~x) + ϕ0 where ~z is ~x with some features at 0.

— Recall the efficiency property of Shapley values:
∑p

j=1 ϕ(j,f ,~x) = f(~x)− E[f(X)]

Hence if no feature is set to 0, g and f coincide, with ϕ0 = E[f(X)]

— Interpretation:

— With no information the prediction is E[f(X)]
— Each feature j adds E[f(X)|Xj = xj ]
— ϕ(j,f ,~x) averages this contribution over all possible orderings of the features

21
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Hence if no feature is set to 0, g and f coincide, with ϕ0 = E[f(X)]

— Interpretation:

— With no information the prediction is E[f(X)]
— Each feature j adds E[f(X)|Xj = xj ]
— ϕ(j,f ,~x) averages this contribution over all possible orderings of the features
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Global SHAP explainer
Ij = 1

n

∑n
i=1 ϕ(j,f , ~xi)
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Advantages and limitations of Shapley values

, Good theoretical properties

/ Computationally intensive

, but not for tree-based models! (see TreeSHAP)

/ Ignores dependence between features

, but not for tree-based models! (see TreeSHAP)

/ Need access toD (unless you can draw realistic values for ~xl, l = 1, . . . ,m)

, but not for tree-based models! (see TreeSHAP)

23



Conclusion

— LIME and SHAP provide model-agnostic, local explanations

— SHAP enjoys nice theoretical properties but is slower (except for tree-based models)

— SHAP is more stable than LIME but neither is very robust for non-linear model
Alvarez-Melis and Jaakkola 2018; Lakkaraju, Arsov, and Bastani 2020

— Minimal sufficient subsets
Chen et al. 2018; Camburu et al. 2021

— How do you evaluate interpretability?
Robnik-Šikonja and Bohanec 2018; Molnar, Casalicchio, and Bischl 2019

— Statistical significance? Causality?
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