CBIO meeting

Interpretable models with LIME and SHAP

Chloé-Agathe Azencott

Center for Computational Biology (CBIO)
Mines ParisTech – Institut Curie – INSERM U900
PSL Research University & PR[AI]RIE, Paris, France

September 29, 2021

Model interpretability

Why is my model making these predictions?

- Drive scientific hypotheses
- Detect bias
- Acceptance

Global vs local explanations

— Global explanations: How does a specific part of the model affect the predictions?

"part of the model":

- a feature or set of features
- a training sample or set of samples

Example: coefficient in a linear model, random forest importance (see next slide)

Global vs local explanations

- Global explanations: How does a specific part of the model affect the predictions?
 - "part of the model":
 - a feature or set of features
 - a training sample or set of samples
 - Example: coefficient in a linear model, random forest importance (see next slide)
- Local explanations: Why does the model make this prediction for a specific instance?

Global vs local explanations

- Global explanations: How does a specific part of the model affect the predictions?
 - "part of the model":
 - a feature or set of features
 - a training sample or set of samples
 - Example: coefficient in a linear model, random forest importance (see next slide)
- Local explanations: Why does the model make this prediction for a specific instance?

By extension: **aggregate** local explanations to understand why the model makes these predictions for the **entire dataset** (or an entire class van der Linden, Haned, and Kanoulas 2019

Lipton 2016

- Global explanations
- Mean Decrease in Impurity (feature_importance attribute in sklearn):

Mean decrease in impurity attributed to the feature

- Global explanations
- Mean Decrease in Impurity (feature_importance attribute in sklearn):
 - Mean decrease in impurity attributed to the feature
 - © Seem to favor numerical features and categorical features with high cardinality

- Global explanations
- Mean Decrease in Impurity (feature_importance attribute in sklearn):
 - Mean decrease in impurity attributed to the feature
 - © Seem to favor numerical features and categorical features with high cardinality
- Permutation importance (inspection.permutation_importance in sklearn):
 - Decrease in model score when the feature is randomly shuffled in the train set

- Global explanations
- Mean Decrease in Impurity (feature_importance attribute in sklearn):
 - Mean decrease in impurity attributed to the feature
 - © Seem to favor numerical features and categorical features with high cardinality
- Permutation importance (inspection.permutation_importance in sklearn):
 - Decrease in model score when the feature is randomly shuffled in the train set
 - © Can be used with any model!

- Global explanations
- Mean Decrease in Impurity (feature_importance attribute in sklearn):
 - Mean decrease in impurity attributed to the feature
 - © Seem to favor numerical features and categorical features with high cardinality
- Permutation importance (inspection.permutation_importance in sklearn):
 - Decrease in model score when the feature is randomly shuffled in the train set
 - © Can be used with any model!
- Solution Not robust to correlations between features

Example

Outline

Objective: Given

- training data $\mathcal{D} = \{\vec{x}_i, y_i\}_{i=1,\dots,n}$, with $\vec{x}_i \in \mathbb{R}^p$,
- a model f that has been learned on \mathcal{D} ,
- an instance $\vec{x} \in \mathbb{R}^p$,

find a **local explanation** for $m{f}(m{ec{x}})$

Outline

Objective: Given

- training data $\mathcal{D} = \{\vec{x}_i, y_i\}_{i=1,\dots,n}$, with $\vec{x}_i \in \mathbb{R}^p$,
- a model f that has been learned on \mathcal{D} ,
- an instance $\vec{x} \in \mathbb{R}^p$,

find a local explanation for $f(\vec{x})$

- 1. LIME: Local Interpretable Model-agnostic Explanations
- 2. Shapley values
- 3. SHAP

LIME: Local Interpretable Model-agnostic Explanations

- **Local surrogate** model: an interpretable model $g \in \mathcal{G}$ that approximates the trained model
- Algorithm:
 - Generate a labeled data set \mathcal{Z} of m perturbed samples:

$$\begin{array}{ll} \text{for } i=1,\ldots,m \\ \text{for } j=1,\ldots,p \text{: sample } z_j \text{ from } \mathcal{N}(\mu_j,\sigma_j^2) \\ \text{label } \vec{z_i} \text{ by } \boldsymbol{f}(\vec{z_i}) \end{array} \qquad \mu_j,\sigma_j^2 \text{ computed on } \mathcal{D}$$

- Compute weights w_i inversely proportional to $||\vec{z}_i \vec{x}||_2$ $w_i = \sqrt{\frac{\exp(-||\vec{z}_i \vec{x}||_2^2)}{0.75^2\,p}}$
- Train a model from G on Z, weighting the loss of sample i by w_i

$$\underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \, \frac{1}{m} \sum_{i=1}^{m} w_i L(\underbrace{\boldsymbol{f}(\vec{z}_i)}_{\text{true label}}, \underbrace{g(\vec{z}_i)}_{\text{prediction}}) + \lambda \underbrace{\Omega(g)}_{\text{model complexi}}$$

Ribeiro, Singh, and Guestrin 2016

LIME with linear surrogate models

$$\underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \frac{1}{m} \sum_{i=1}^{m} w_i L(\boldsymbol{f}(\vec{z}_i), g(\vec{z}_i)) + \lambda \Omega(g)$$

becomes

$$\underset{\vec{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{1}{m} \sum_{i=1}^m w_i \left(\mathbf{f}(\vec{z}_i) - \langle \vec{\beta}, \vec{z}_i \rangle \right)^2 + \lambda \left| \left| \vec{\beta} \right| \right|_1$$

- Set λ so as to select a user-defined number of features/explanations.

LIME with linear surrogate models

$$\underset{g \in \mathcal{G}}{\operatorname{arg \, min}} \frac{1}{m} \sum_{i=1}^{m} w_i L(\boldsymbol{f}(\vec{z}_i), g(\vec{z}_i)) + \lambda \, \Omega(g)$$

becomes

$$\underset{\vec{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{1}{m} \sum_{i=1}^m w_i \left(\mathbf{f}(\vec{z}_i) - \langle \vec{\beta}, \vec{z}_i \rangle \right)^2 + \lambda \left| \left| \vec{\beta} \right| \right|_1$$

- Set λ so as to select a user-defined number of features/explanations.
- Alternatives include **decision trees** (and then $\Omega(g)$ is the number of features used + tree depth).

LIME Example 1

LIME Example 2

Global explanations from LIME

- Features that explain many different instances are more important
- Given a budget of B instances to look at:

$$I_j = \sqrt{\sum_{i=1}^B |\beta_j^i|}$$

- For visualization: find a subset ${\cal V}$ of instances with greater **coverage**

$$c(\mathcal{V}) = \sum_{j=1}^{p} I_j \, \mathbb{1}_{\exists i \in \mathcal{V}: |\beta_j^i| > 0}$$

Voir aussi van der Linden, Haned, and Kanoulas 2019

LIME Example

Advantages and limitations of LIME

- © Explanations are relatively **human-friendly** (few features, use an interpretable model)
- Variants specific to text and images
- Sensitive to the definition of the neighborhood
- Instable: explanations vary significantly in small neighborhoods)
 Alvarez-Melis and Jaakkola 2018

- In game theory: how to assign payouts to cooperative players depending on their contribution to the global payout
- game ≡ making a prediction
- global payout ≡ (prediction average prediction)

- **players** \equiv features

– payouts ≡ feature importance

- In game theory: how to assign payouts to cooperative players depending on their contribution to the global payout
- game ≡ making a prediction
 global payout ≡ (prediction average prediction)
- players ≡ features
 payouts ≡ feature importance
- Shapley value $\varphi(j, \mathbf{f}, \vec{x})$ of feature j to the prediction $\mathbf{f}(\vec{x})$: average contribution of a feature j to the prediction $\mathbf{f}(\vec{x})$ in different coalitions (= sets of features)

- In game theory: how to assign payouts to cooperative players depending on their contribution to the global payout
- game ≡ making a prediction
 global payout ≡ (prediction average prediction)
- players ≡ featurespayouts ≡ feature importance
- Shapley value $\varphi(j, \mathbf{f}, \vec{x})$ of feature j to the prediction $\mathbf{f}(\vec{x})$: average contribution of a feature j to the prediction $\mathbf{f}(\vec{x})$ in different coalitions (= sets of features)
- Contribution of coalition $S \subseteq \{1, \dots, p\}$ to $f(\vec{x}) =$ (average prediction when the features in S are set to their values in \vec{x} average prediction)

- In game theory: how to assign payouts to cooperative players depending on their contribution to the global payout
- game ≡ making a prediction
 global payout ≡ (prediction average prediction)
- players ≡ featurespayouts ≡ feature importance
- Shapley value $\varphi(j, \mathbf{f}, \vec{x})$ of feature j to the prediction $\mathbf{f}(\vec{x})$: average contribution of a feature j to the prediction $\mathbf{f}(\vec{x})$ in different coalitions (= sets of features)
- **Contribution** of coalition $S \subseteq \{1, \dots, p\}$ to $f(\vec{x})$ = (average prediction when the features in S are set to their values in \vec{x} average prediction)

$$\psi(\boldsymbol{f}, \vec{\boldsymbol{x}}, \mathcal{S}) = \underbrace{\mathbb{E}[\boldsymbol{f}(X_1, \dots, X_p) | X_k = \boldsymbol{x_k} \text{ for } k \in \mathcal{S}]}_{\text{marginalize over features not in } \mathcal{S}} - \underbrace{\mathbb{E}[\boldsymbol{f}(X_1, \dots, X_p)]}_{\text{average prediction}}$$

Shapley 1952; Owen and Prieur 2017

- Contribution of coalition $S \subseteq \{1, \dots, p\}$ to $f(\vec{x})$ = average prediction when the features in S are set to their values in \vec{x} - average prediction

$$\psi(\boldsymbol{f}, \vec{\boldsymbol{x}}, \mathcal{S}) = \underbrace{\mathbb{E}[\boldsymbol{f}(X_1, \dots, X_p) | X_k = \boldsymbol{x_k} \text{ for } k \in \mathcal{S}]}_{\text{marginalize over features not in } \mathcal{S}} - \underbrace{\mathbb{E}[\boldsymbol{f}(X_1, \dots, X_p)]}_{\text{average prediction}}$$

- Shapley value $\varphi(j, \mathbf{f}, \vec{x})$ of feature j to the prediction $\mathbf{f}(\vec{x})$:

$$\varphi(j, \mathbf{f}, \mathbf{\vec{x}}) = \sum_{\mathcal{S} \subseteq \{1, \dots, p\} \setminus \{j\}} \frac{|\mathcal{S}|! (p - |\mathcal{S}| - 1)!}{p!} \left(\psi(\mathbf{f}, \mathbf{\vec{x}}, \mathcal{S} \cup \{j\}) - \psi(\mathbf{f}, \mathbf{\vec{x}}, \mathcal{S}) \right)$$

Shapley 1952; Owen and Prieur 2017

- **Efficiency:** the sum of payouts is the global payout $\sum_{j=1}^p \varphi(j, \mathbf{f}, \vec{\mathbf{x}}) = \mathbf{f}(\vec{\mathbf{x}}) - \mathbb{E}[\mathbf{f}(X)]$

- **Efficiency:** the sum of payouts is the global payout $\sum_{j=1}^p \varphi(j, \mathbf{f}, \vec{\mathbf{x}}) = \mathbf{f}(\vec{\mathbf{x}}) \mathbb{E}[\mathbf{f}(X)]$
- Symmetry: two features that contribute equally to all possible coalitions should have the same Shapley value

```
if for all \mathcal{S} \in \{1, \dots, p\} \setminus \{j, k\}, \psi(\boldsymbol{f}, \vec{\boldsymbol{x}}, \mathcal{S} \cup \{j\}) = \psi(\boldsymbol{f}, \vec{\boldsymbol{x}}, \mathcal{S} \cup \{k\}), then \varphi(j, \boldsymbol{f}, \vec{\boldsymbol{x}}) = \varphi(k, \boldsymbol{f}, \vec{\boldsymbol{x}})
```

- **Efficiency:** the sum of payouts is the global payout $\sum_{j=1}^p \varphi(j, \mathbf{f}, \vec{\mathbf{x}}) = \mathbf{f}(\vec{\mathbf{x}}) \mathbb{E}[\mathbf{f}(X)]$
- **Symmetry:** two features that contribute equally to all possible coalitions should have the same Shapley value if for all $S \in \{1, \dots, n\} \setminus \{i, k\}$ ab $(f, \vec{\sigma}, S + \{i\}\}) = ab$ $(f, \vec{\sigma}, S + \{j\}\})$ then

```
if for all \mathcal{S} \in \{1, \dots, p\} \setminus \{j, k\}, \psi(\boldsymbol{f}, \vec{\boldsymbol{x}}, \mathcal{S} \cup \{j\}) = \psi(\boldsymbol{f}, \vec{\boldsymbol{x}}, \mathcal{S} \cup \{k\}), then \varphi(j, \boldsymbol{f}, \vec{\boldsymbol{x}}) = \varphi(k, \boldsymbol{f}, \vec{\boldsymbol{x}})
```

Dummy: a feature that does not affect predictions has a Shapley value of 0.

- **Efficiency:** the sum of payouts is the global payout $\sum_{j=1}^p \varphi(j, \mathbf{f}, \vec{\mathbf{x}}) = \mathbf{f}(\vec{\mathbf{x}}) \mathbb{E}[\mathbf{f}(X)]$
- Symmetry: two features that contribute equally to all possible coalitions should have the same Shapley value

```
if for all \mathcal{S} \in \{1,\dots,p\} \setminus \{j,k\}, \psi(\boldsymbol{f},\vec{\boldsymbol{x}},\mathcal{S} \cup \{j\}) = \psi(\boldsymbol{f},\vec{\boldsymbol{x}},\mathcal{S} \cup \{k\}), then \varphi(j,\boldsymbol{f},\vec{\boldsymbol{x}}) = \varphi(k,\boldsymbol{f},\vec{\boldsymbol{x}})
```

- Dummy: a feature that does not affect predictions has a Shapley value of 0.
- Additivity: if the prediction can be decomposed in $\mathbf{f} = f_1 + f_2$, then for all j and \vec{x} , $\varphi(j, \mathbf{f}, \vec{x}) = \varphi(j, f_1, \vec{x}) + \varphi(j, f_2, \vec{x})$

- **Efficiency:** the sum of payouts is the global payout $\sum_{j=1}^p \varphi(j, \mathbf{f}, \vec{\mathbf{x}}) = \mathbf{f}(\vec{\mathbf{x}}) \mathbb{E}[\mathbf{f}(X)]$
- **Symmetry:** two features that contribute equally to all possible coalitions should have the same Shapley value if for all $S \in \{1, \dots, p\} \setminus \{j, k\}, \psi(\boldsymbol{f}, \vec{\boldsymbol{x}}, S \cup \{j\}) = \psi(\boldsymbol{f}, \vec{\boldsymbol{x}}, S \cup \{k\})$, then $\varphi(j, \boldsymbol{f}, \vec{\boldsymbol{x}}) = \varphi(k, \boldsymbol{f}, \vec{\boldsymbol{x}})$
- Dummy: a feature that does not affect predictions has a Shapley value of 0.
- Additivity: if the prediction can be decomposed in $\mathbf{f} = f_1 + f_2$, then for all j and \vec{x} , $\varphi(j, \mathbf{f}, \vec{x}) = \varphi(j, f_1, \vec{x}) + \varphi(j, f_2, \vec{x})$
- ightarrow For random forests, Shapley values are averages of the Shapley values of the individual trees.

Shapley 1952; Owen and Prieur 2017

Computing Shapley values

$$\varphi(j, \boldsymbol{f}, \boldsymbol{\vec{x}}) = \sum_{\mathcal{S} \subset \{1, \dots, p\} \setminus \{j\}} \frac{|\mathcal{S}|!(p - |\mathcal{S}| - 1)!}{p!} \left(\mathbb{E}[\boldsymbol{f}(X)|X_k = \boldsymbol{x_k}, k \in \mathcal{S} \cup \{j\}] - \mathbb{E}[\boldsymbol{f}(X)|X_k = \boldsymbol{x_k}, k \in \mathcal{S}] \right)$$

Approximate with Monte-Carlo sampling
$$\hat{\varphi}(j, \pmb{f}, \vec{\pmb{x}}) = \frac{1}{m} \sum_{i=1}^m \pmb{f}(\vec{x}_{+j}^i) - \pmb{f}(\vec{x}_{-j}^i)$$

- $-\vec{x}_{+i}^i = \vec{x}$ but with p' features, **except** x_j , replaced with their values in another instance of \mathcal{D}
- $-\vec{x}_{-i}^i = \vec{x}$ but with p' features, **including** x_i , replaced with their values in another instance of \mathcal{D}

Shapley values Example 1

Shapley values Example 2

Advantages and limitations of Shapley values

- **©** Good theoretical properties
- Possibility of contrastive explanations comparing to the average prediction over a certain subset rather than over all data points
- Computationally intensive
- © **Interpretation** is less straightforward ("the contribution of x_j to the difference between the actual prediction and the average prediction")
- \odot Need access to \mathcal{D} (unless you can draw realistic values for $\vec{x}^l, l = 1, \ldots, m$)

SHAP: SHapley Additive exPlanations

- **LIME:** look for a simple model q that approximates f in a neighborhood of \vec{x}

$$\underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \frac{1}{|\mathcal{Z}|} \sum_{\vec{z}_i \in \mathcal{Z}} w_i L(\boldsymbol{f}(\vec{z}_i), g(\vec{z}_i)) + \lambda \Omega(g)$$

- LIME: look for a simple model g that approximates $m{f}$ in a neighborhood of $ec{m{x}}$

$$\underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \frac{1}{|\mathcal{Z}|} \sum_{\vec{z}_i \in \mathcal{Z}} w_i L(\mathbf{f}(\vec{z}_i), g(\vec{z}_i)) + \lambda \Omega(g)$$

Set

- $\mathcal{Z} = \{ \text{vectors of } \mathbb{R}^p \text{ obtained by setting some of the features of } \vec{x} \text{ to } 0 \}$
- $w_i = \frac{(p-1)}{\left(\frac{p}{||\vec{z}_i||_0}\right)||\vec{z}_i||_0(p-||\vec{z}_i||_0)} \qquad ||\vec{z}||_0 = \mathcal{S}_{\vec{z}} = \text{number of non-zero entries of } \vec{z}$
- $-L(\boldsymbol{f}(\vec{z}),g(\vec{z})) = (\mathbb{E}[\boldsymbol{f}(X)|X_k = \boldsymbol{x_k} \text{ for } k \in \mathcal{S}_{\vec{z}}] g(\vec{z}))^2$
- $\Omega(g) = 0$
- $-g(\vec{z}) = \sum_{j \in S_{\vec{z}}} \phi_j(\vec{x}) + \phi_0(\vec{x})$ (g is additive)

- **LIME:** look for a simple model g that approximates f in a neighborhood of \vec{x}

$$\underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \frac{1}{|\mathcal{Z}|} \sum_{\vec{z}_i \in \mathcal{Z}} w_i L(\mathbf{f}(\vec{z}_i), g(\vec{z}_i)) + \lambda \Omega(g)$$

Set

- $\mathcal{Z} = \{ \text{vectors of } \mathbb{R}^p \text{ obtained by setting some of the features of } \vec{x} \text{ to } 0 \}$
- $w_i = \frac{(p-1)}{\left(\frac{p}{||\vec{z}_i||_0}\right)||\vec{z}_i||_0(p-||\vec{z}_i||_0)} \qquad ||\vec{z}||_0 = \mathcal{S}_{\vec{z}} = \text{number of non-zero entries of } \vec{z}$
- $-L(\boldsymbol{f}(\vec{z}),g(\vec{z})) = (\mathbb{E}[\boldsymbol{f}(X)|X_k = \boldsymbol{x_k} \text{ for } k \in \mathcal{S}_{\vec{z}}] g(\vec{z}))^2$
- $-\Omega(g)=0$
- $-g(\vec{z}) = \sum_{j \in S_{\vec{z}}} \phi_j(\vec{x}) + \phi_0(\vec{x})$ (g is additive)

Then $\phi_j(\vec{x})$ coincides with the **Shapley value** $\varphi(j, \mathbf{f}, \vec{x})$

- LIME: look for a simple model g that approximates f in a neighborhood of \vec{x}

$$\underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \frac{1}{|\mathcal{Z}|} \sum_{\vec{z}_i \in \mathcal{Z}} w_i L(\mathbf{f}(\vec{z}_i), g(\vec{z}_i)) + \lambda \Omega(g)$$

Set

$$- \ \mathcal{Z} = \{ \text{vectors of } \mathbb{R}^p \text{ obtained by setting some of the features of } \vec{x} \text{ to } 0 \}$$

$$-w_i = \frac{(p-1)}{\binom{p}{||\vec{z}_i||_0}||\vec{z}_i||_0(p-||\vec{z}_i||_0)} \qquad ||\vec{z}||_0 = \mathcal{S}_{\vec{z}} = \text{number of non-zero entries of } \vec{z}$$

$$-L(\boldsymbol{f}(\vec{z}), g(\vec{z})) = (\mathbb{E}[\boldsymbol{f}(X)|X_k = \boldsymbol{x_k} \text{ for } k \in \mathcal{S}_{\vec{z}}] - g(\vec{z}))^2$$

$$-\Omega(g)=0$$

$$-g(\vec{z}) = \sum_{j \in S_{\vec{z}}} \phi_j(\vec{x}) + \phi_0(\vec{x})$$
 (g is additive)

Then $\phi_j(\vec{x})$ coincides with the **Shapley value** $\varphi(j, \boldsymbol{f}, \vec{x})$ **LIME+kernelSHAP**

Lundberg and Lee 2017

SHAP explanations: surrogate models built additively from Shapley values

$$g(\vec{z}) = \sum_{j=1}^p \mathbbm{1}_{\vec{z}_j \neq 0} \ \varphi(j, \mathbf{f}, \vec{x}) + \varphi_0 \quad \text{ where } \vec{z} \text{ is } \vec{x} \text{ with some features at } 0.$$

SHAP explanations: surrogate models built additively from Shapley values

$$g(\vec{z}) = \sum_{j=1}^p \mathbb{1}_{\vec{z}_j \neq 0} \ \varphi(j, \mathbf{f}, \vec{x}) + \varphi_0$$
 where \vec{z} is \vec{x} with some features at 0 .

- Recall the efficiency property of Shapley values: $\sum_{j=1}^{p} \varphi(j, \mathbf{f}, \mathbf{x}) = \mathbf{f}(\mathbf{x}) - \mathbb{E}[\mathbf{f}(X)]$ Hence if no feature is set to 0, g and \mathbf{f} coincide, with $\varphi_0 = \mathbb{E}[\mathbf{f}(X)]$

SHAP explanations: surrogate models built additively from Shapley values

$$g(\vec{z}) = \sum_{i=1}^p \mathbb{1}_{\vec{z}_j \neq 0} \ \varphi(j, \mathbf{f}, \vec{x}) + \varphi_0$$
 where \vec{z} is \vec{x} with some features at 0 .

- Recall the efficiency property of Shapley values: $\sum_{j=1}^{p} \varphi(j, \mathbf{f}, \mathbf{x}) = \mathbf{f}(\mathbf{x}) \mathbb{E}[\mathbf{f}(X)]$ Hence if no feature is set to 0, g and \mathbf{f} coincide, with $\varphi_0 = \mathbb{E}[\mathbf{f}(X)]$
- Interpretation:
 - With no information the prediction is $\mathbb{E}[\mathbf{f}(X)]$
 - Each feature j adds $\mathbb{E}[\boldsymbol{f}(X)|X_j=\boldsymbol{x_j}]$
 - $\ arphi(j,m{f},m{ec{x}})$ averages this contribution over all possible orderings of the features

Global SHAP explainer

$$I_j = \frac{1}{n} \sum_{i=1}^n \varphi(j, \mathbf{f}, \vec{x}_i)$$

Advantages and limitations of Shapley values

- Good theoretical properties
- **©** Computationally intensive
- but not for tree-based models! (see TreeSHAP)
- Ignores dependence between features
- but not for tree-based models! (see TreeSHAP)
- \odot Need **access to** \mathcal{D} (unless you can draw realistic values for $\vec{x}^l, l = 1, \ldots, m$)
- but not for tree-based models! (see TreeSHAP)

Conclusion

- LIME and SHAP provide model-agnostic, local explanations
- SHAP enjoys nice theoretical properties but is slower (except for tree-based models)
- SHAP is more stable than LIME but neither is very robust for non-linear model Alvarez-Melis and Jaakkola 2018; Lakkaraju, Arsov, and Bastani 2020

Conclusion

- LIME and SHAP provide model-agnostic, local explanations
- SHAP enjoys nice theoretical properties but is slower (except for tree-based models)
- SHAP is more stable than LIME but neither is very robust for non-linear model Alvarez-Melis and Jaakkola 2018; Lakkaraju, Arsov, and Bastani 2020
- Minimal sufficient subsets
 Chen et al. 2018; Camburu et al. 2021
- How do you evaluate interpretability?
 Robnik-Šikonja and Bohanec 2018; Molnar, Casalicchio, and Bischl 2019
- Statistical significance? Causality?

Acknowledgments

- Slides based on the cited papers as well as the online book Interpretable machine learning. A
 Guide for Making Black Box Models Explainable, Molnar, Christoph (2019)
 https://christophm.github.io/interpretable-ml-book/
- Discussions with Ndèye Maguette Mbaye and Charles Vesteghem
- Python librairies lime and shap (and, obviously, numpy, scikit-learn, and matplotlib)

References I

- Alvarez-Melis, David and Tommi S Jaakkola (2018). "On the robustness of interpretability methods". In: arXiv preprint. URL: https://arxiv.org/abs/1806.08049.
- Breiman, Leo (2001). "Random forests". In: *Machine learning* 45.1, pp. 5–32.
- Camburu, Oana-Maria et al. (2021). "The struggles of feature-based explanations: Shapley values vs. minimal sufficient subsets". In: Explainable Agency in Artificial Intelligence Workshop at AAAI 2021. URL: http://arxiv.org/abs/2009.11023v2.
- Chen, Jianbo et al. (2018). "Learning to explain: An information-theoretic perspective on model interpretation". In: *International Conference on Machine Learning*. PMLR, pp. 883–892.
- Doshi-Velez, Finale and Been Kim (2017). "Towards a rigorous science of interpretable machine learning". In: arXiv preprint. URL: https://arxiv.org/abs/1702.08608.
- Lakkaraju, Himabindu, Nino Arsov, and Osbert Bastani (2020). "Robust and stable black box explanations". In: *International Conference on Machine Learning*. PMLR, pp. 5628–5638.
- Lipton, Zachary C (2016). "The mythos of model interpretability". In: arXiv preprint. URL: https://arxiv.org/abs/1606.03490.
- Louppe, Gilles (2014). "Random Forests: From Theory to Practice". Doctoral dissertation. University of Liège. URL: https://orbi.uliege.be/handle/2268/170309.

References II

- Lundberg, Scott M and Su-In Lee (2017). "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems. Vol. 30. URL:
 - https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.
- Molnar, Christoph, Giuseppe Casalicchio, and Bernd Bischl (2019). "Quantifying model complexity via functional decomposition for better post-hoc interpretability". In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. URL: https://arxiv.org/abs/1904.03867v1.
- Owen, Art B and Clémentine Prieur (2017). "On Shapley value for measuring importance of dependent inputs". In: SIAM/ASA Journal on Uncertainty Quantification 5.1, pp. 986–1002.
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). ""Why should I trust you?" Explaining the predictions of any classifier". In:

 Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1135–1144. URL:

 https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf.
- Robnik-Šikonja, Marko and Marko Bohanec (2018). "Perturbation-based explanations of prediction models". In: *Human and machine learning*. Springer, pp. 159–175.
- Shapley, Lloyd S (1952). "17. A value for n-person games". In: Contributions to the Theory of Games, Volume II. Vol. 28. Annals of Mathematics Studies. Princeton University Press, pp. 307–313.

References III

Štrumbelj, Erik and Igor Kononenko (2014). "Explaining prediction models and individual predictions with feature contributions". In: *Knowledge and information systems* 41.3, pp. 647–665.

van der Linden, Ilse, Hinda Haned, and Evangelos Kanoulas (2019). "Global aggregations of local explanations for black box models". In:

Proceedings of the Workshop on Fairness, Accountability, Confidentiality, Transparency, and Safety in Information Retrieval at SIGIR. URL:

https://arxiv.org/abs/1907.03039.