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Abstract

We propose a new formulation of multi-task feature selec-

tion coupled with multiple network regularizers, and show

that the problem can be exactly and efficiently solved by

maximum flow algorithms. This method contributes to one

of the central topics in data mining: How to exploit struc-

tural information in multivariate data analysis, which has

numerous applications, such as gene regulatory and social

network analysis. On simulated data, we show that the pro-

posed method leads to higher accuracy in discovering causal

features by solving multiple tasks simultaneously using net-

works over features. Moreover, we apply the method to

multi-locus association mapping with Arabidopsis thaliana

genotypes and flowering time phenotypes, and demonstrate

its ability to recover more known phenotype-related genes

than other state-of-the-art methods.
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1 Introduction

Knowledge discovery from structured data is one of the
central topics in data mining. In particular, networks,
or graphs, have attracted considerable attention in the
community, as they may represent molecular, biological,
social, or other types of systems whose functionality and
mechanisms are far from being completely understood.
Large amounts of data are now available as networks
across a wide range of domains, from biological path-
ways in KEGG to chemical compounds in PubChem
and social networks on the web.

A crucial concern when studying such systems is
to determine which part of the network is responsible
for performing a particular function. For instance,
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medical researchers are interested in determining the
subset of proteins in an interaction network that governs
the response to a particular treatment. Structural
biologists seek to find out which part of the 3D structure
of a protein, which can be modeled by a graph, is
correlated with a particular function. Neuroscientists
search for subgraphs in brain connectivity networks
from functional MRI screens that correlate with certain
types of behavior or cognitive tasks. Geneticists are
interested in sets of mutations in interacting genes that
may be associated with heritable diseases.

Hence the general problem of feature selection on
networks is of broad interest across disciplines. In
these networks, features coincide with vertices (nodes)
and the network topology can be viewed as a priori
knowledge about relationships between features.

The common approach to this problem is to use
Lasso-based regression [28] with an ℓ1-regularizer of the
weight vector and additional structured regularizers that
represent relationships between features. Examples in-
clude supervised [3, 14, 15] and unsupervised [26] learn-
ing methods and applications in computer vision [9] and
statistical genetics [6, 18, 19]. Many of those methods
have also been proposed for multi-task learning, where
the commonalities between related tasks are leveraged
to improve the quality of models on individual tasks.

In spite of their success, we see a number of draw-
backs to regression-based approaches in this context.
First, they do not scale to millions or even hundreds
of thousands of features, although such a setting is com-
mon, for instance, in genetics. Second, regression-based
approaches concentrate on optimizing a prediction loss,
while the problem to solve is often formulated in terms
of finding features that are relevant for, correlated to or
associated with a property of interest.

These two issues have been addressed by our recent
work in statistical genetics, which proposes a new
formulation of network-constrained feature selection
called SConES [2]. This method directly maximizes a
score of association rather than minimizing a prediction
error. Its optimization scheme is exact and efficient,
thanks to a minimum-cut reformulation, and it has been
empirically shown to recover more causal features than
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its regression-based counterparts.
An additional issue arises in multi-task settings:

Most current methods [16, 32, 33] assume that the same
features should be selected across all tasks. While this is
reasonable for some application domains, one can think
of numerous examples where this assumption is violated.
For instance, lung diseases such as asthma and chronic
obstructive pulmonary disease may be linked to a set of
common mutations, but there is no indication that the
exact same mutations are causal in both diseases.

Moreover, to the best of our knowledge, none of the
multi-task approaches incorporating structured regular-
izers make it possible to consider different structural
constraints for different tasks. However, we may want
to consider different biological pathways for different dis-
eases, or to highlight different parts of brain connectivity
networks for different correlated behaviors.

To address these two issues, we propose a new
formulation of SConES for multi-task feature selection
coupled with multiple network regularizers to improve
feature selection in each task by combining and solving
multiple tasks simultaneously. The key to extending
SConES to multiple tasks, which is the main technical
contribution in this paper, is the unification of multiple
networks into a single network. This strategy enables us
to solve the multiple tasks as a single task, and hence we
still obtain the exact solution through a minimum cut
reformulation. Thanks to the efficiency of the maximum
flow algorithm that solves this problem, our approach
is still tractable for large-scale networks. To the best
of our knowledge, this is the first non-regression-based
formulation of multi-task feature selection on multiple
feature space networks.

The motivating application underlying this paper
is to give an efficient method for multi-locus associa-
tion mapping in genetics. This problem, which aims at
explaining the genetic basis of diseases and other ob-
served traits, is receiving growing interest in the con-
text of genome-wide association studies (GWAS) [21].
The goal of GWAS is to find single-nucleotide poly-
morphisms (SNPs), single positions that differ in the
genomes of different individuals, which are significantly
associated with variance in phenotype (diseases or other
observed traits). Since SNPs can be viewed as features,
feature selection techniques have been widely developed
and applied to this problem (e.g. [1]). The proposed
method holds the following advantages over the typical
GWAS setting: First, the method can exploit a pri-
ori biological knowledge about network structures over
SNPs, derived for example from protein-protein inter-
action networks. Second, we often have not only one
but several related phenotypes for each set of SNPs,
and hence our method can treat them simultaneously

as multiple tasks to increase the accuracy in retrieving
phenotype-related SNPs. We confirm in this paper the
efficacy of our approach compared to the state-of-the-
art methods in feature selection on Arabidopsis thaliana
SNPs and flowering time phenotypes.

This paper is organized as follows: We present our
approach to multi-task feature selection across several
networks in Section 2, discuss related work in Section 3,
evaluate our method on synthetic and real data in
Section 4, and summarize our contribution in Section 5.

2 Feature Selection on Networks

We directly perform feature selection on networks. For-
mally, we only require, for each task, a network over the
features, that is, a weighted graph G = (V,E) with a
set of vertices (features) V and edges E, and a function
q : V → R that assigns to each vertex v a quantity q(v),
measuring its relevance for the problem at hand.

This is different from the typical setting of multivari-
ate data analysis, where a design matrix X ∈ RN×|V |

and a response vector y ∈ RN about N individuals are
given. In such a framework, feature selection is usu-
ally solved as a regularized linear regression problem,
where one tries to determine a subset of features of X
which minimizes a prediction error of y. In this con-
text a relevance score q(v) can be easily obtained by
measuring the association between y and each feature
of X. Many techniques are available for that purpose:
Pearson’s correlation coefficient or the cosine similarity
for linear associations, and the Hilbert-Schmidt indepen-
dence criterion (HSIC) [11], sequence kernel association
test (SKAT) [29], or maximum information coefficient
(MIC) [25] for non-linear associations.

2.1 Single Task. We first introduce the single-task
formulation of SConES [2] for feature selection. Let
f : 2V → R be additive in the sense that it is defined as

f(S) :=
∑

v∈Sq(v).(2.1)

This function measures the goodness of a subset S of
features via q(v) for each feature v ∈ S.

Our goal is to find a subset S ⊂ V which maximizes
f(S) under the constraints that the cardinality of S
is small and its elements tend to be connected to one
another. As conducting an exhaustive search over all
connected subnetworks is not feasible, we formulate the
problem as follows by focusing on local connectivity:

argmax
S⊂V

f(S)− g(S),(2.2)

g(S) := λ
∑

e∈Bw(e) + η|S|,

where B = { {v, u} ∈ E | v ∈ V \ S, u ∈ S } is the set
of edges located at the boundary of S and w : E → R+
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is a weighting function. The first term in the penalty
function g enforces the connectivity of S, as it penalizes
selecting a vertex without selecting all of its neighbors.
The second term enforces its sparsity and the cardinality
of S is penalized. The two real-valued parameters λ and
η control these constraints.

A major advantage of this formulation is that
Equation (2.2) can be exactly solved by maximum
flow algorithms by adding source and sink nodes to
the given network G (Supplementary Note A or [2]).
The smallest known time complexity of these algo-
rithms is O( |V ||E| log(|V |2/|E|) ) [10] and the Boykov-
Kolmogorov algorithm [4] is more efficient in practice.

Regularization Path. An interesting property of
the regularization parameter η, which was not analyzed
in [2], is its anti-monotonicity with respect to the
number of selected features. Specifically, if we denote
the selected features for each η by S(η), we have S(η) ⊂
S(η′) if and only if η > η′. Moreover, we can easily
check that our formulation satisfies all assumptions
to apply the parametric maximum flow algorithm [8]
(Supplementary Note B). With this algorithm, we can
obtain the entire regularization path [13] along with the
changes in η without increasing the time complexity.

In practice, this property of η is particularly inter-
esting when we are given cardinality constraints a priori
over the size of the set of selected features. Then we can
directly pick from the regularization path the solutions
that fulfill these constraints.

2.2 Multiple Tasks. Our main contribution is
a new, generalized formulation of SConES (Equa-
tion (2.2)) to achieve feature selection for multiple tasks
simultaneously. In what follows, we assume that the set
of vertices (features) V is shared all over K tasks, and
for each task i we have a network Gi = (V,Ei) associ-
ated with a respective scoring function qi. Given such a
set ofK networks G = {G1, G2, . . . , GK}, the multi-task
feature selection is formulated as

argmax
S1,...,SK⊂V

K∑
i=1

(
fi(Si)− gi(Si)

)
−
∑
i<j

h(Si, Sj),(2.3)

fi(Si) :=
∑
v∈Si

qi(v), gi(Si) := λ
∑
e∈Bi

wi(e) + η|Si|.

We introduce a new penalty function h : 2V × 2V →
R defined as h(S, S′) := µ|S△S′ |, where µ is a
real-valued regularization parameter and S△S′ is the
symmetric difference between them, that is, S△S′ =
(S∪S′)\(S∩S′). The penalty function h represents our
belief that similar networks should be associated with
related features, and the larger µ, the more we enforce
this belief. A large µ is thus better when it is desirable

to select the same features across tasks.
Here we show that this problem can be reduced

to a single-task feature selection similar to that of
Equation (2.2) and thus can also benefit from maximum
flow algorithms. We show an example for K = 2
in Figure 1a. First we replicate the vertices of each
network Gi so that all sets of vertices are disjoint, that
is, G′

i = (V ′
i , E

′
i) such that V ′

i ∩ V ′
j = ∅ for every

i, j ∈ {1, . . . ,K} with i ̸= j. All edges are copied on the
replicated set V ′

i and assume that vertices are indexed
from 1 to n in each network Gi, where vertices have the
same index if they are identical in the original set V .
The m-th vertex of a network Gi is denoted by vmi . We
then construct a unified network U(G) = (Ṽ , Ẽ) from
the set of K networks G = {G1, . . . , GK} by connecting
each pair of replicated vertices in the following manner:

Ṽ :=
∪K

i=1V
′
i , Ẽ :=

∪K
i=1E

′
i ∪

∪n
m=1Am, where

Am :=
{
{vmi , vmj }

∣∣ i, j ∈ {1, . . . ,K}, i ̸= j
}
.

The weight w̃ of edges is given as w̃(e) = wi(e) if e ∈ E′
i

and w̃(e) = µ/λ otherwise. Thus U(G) has |Ṽ | = Kn

vertices and |Ẽ| =
∑K

i=1 |Ei|+ nK(K − 1)/2 edges.

Theorem 2.1. Given a set of K networks G =
{G1, . . . , GK}. For every subset S ⊂ Ṽ in the unified
network U(G), we have

f(S) =

K∑
i=1

fi(Si), g(S) =

K∑
i=1

gi(Si) +
∑
i<j

h(Si, Sj),

where f, g are defined over U(G) as in Eq. (2.1), (2.2).

Proof. Suppose thatK = 2 for simplicity. We can easily
generalize the following proof for the case of K > 2 by
considering sums over pairs.

The first equation f(S) = f1(S1) + f2(S2) directly
follows from the definition of S1 and S2. Thus we
focus on the second equation g(S) = g1(S1) + g2(S2) +
h(S1, S2). Since V ′

1 ∩ V ′
2 = ∅ and therefore |S| =

|S1| + |S2|, all we have to prove is λ
∑

e∈B w(e) =
λ
∑

e∈B1
w1(e) + λ

∑
e∈B2

w2(e) + µ|S1 △S2|. From
the definition of the unified network, we have B =
B′

1 ∪ B′
2 ∪ BA, where B′

i = { {v, u} ∈ E′
i | v ∈

V ′
i \ S, u ∈ S }, which is a set of edges on the

unified network corresponding to Bi, and BA is given
as BA = { {vmi , vmj } | vmi ∈ S and vmj ̸∈ S, i ̸= j } ⊂∪n

m=1 Am. We show an example of B in Figure 1b.
We see that the cardinality of BA is the same as that
of the set S1 △S2. Thus we have λ

∑
e∈B w(e) =

λ(
∑

e∈B′
1
w1(e) +

∑
e∈B′

2
w2(e) + (µ/λ)|BA| ). □

The multiple task problem in (2.3) is therefore exactly
equivalent to the single task feature selection prob-
lem (2.2) over the unified network U(G), and can there-
fore be solved directly by the maximum flow algorithm.
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Figure 1: (a) Example of two networks (left) which
share vertices and have different edges (solid and dotted
lines), and the unified network (right), where vertices
are duplicated and new edges (dotted lines) are added.
(b) Example of two duplicated networks G′

1 and G′
2.

Note that this formulation applies even if some
features are missing for some task. In that case V ′

i

contains only vertices corresponding to the features
available for task i and A contains only edges {vmi , vmj },
where the feature m is available for both tasks i and j.

2.3 Spectral Analysis. We describe our formula-
tion from a graph spectral point of view. We denote
by f ∈ {0, 1}|V | the indicator vector of a subset S ⊂ V :
fv is set to 1 if v ∈ S and 0 otherwise, and denote by
c ∈ R|V | the vector composed of values q(v).

The function f in Equation (2.1) can be rewritten
as f(S) = cTf . Let L be the Laplacian matrix of
a network G. Then g(S) = λfTLf + η∥f∥0 holds
for the penalty term in Equation (2.2) since we have
fTLf =

∑
{v,u}∈E(fv − fu)

2 if all edge weights are 1,

where (fv−fu)
2 is the XOR of fv and fu and coincides

with the cardinality of B in Equation (2.2). The
same relationship holds if the edges are weighted. The
Laplacian graph regularizer fTLf is often used in the
literature for penalizing disconnected features (e.g. [18]).
Thus we can state the formulation of single-task feature
selection as: argmaxf∈{0,1}|V | cTf − λfTLf − η∥f∥0.

In the multi-task framework, the formulation is
naturally extended to

argmax
f1,...,fK

∑K
i=1

(
cTi fi − λfT

i Lifi − η∥fi∥0
)

−
∑

i<j µ∥fi − fj∥22,

where ∥f − f ′∥22 =
∑

v∈V (fv − f ′
v)

2. Suppose that f̃
and c̃ are concatenations of the vectors f1 . . . ,fK and
c1 . . . , cK , respectively. We directly have

∑K
i=1( c

T
i fi −

η∥fi∥0 ) = c̃Tf̃ − η∥f̃∥0. Moreover, we can prove that∑K
i=1 λf

T
i Lifi +

∑
i<j µ∥fi − fj∥22 = λf̃TL̃f̃ , where

L̃ is the Laplacian matrix of the unified network U(G).
Thus this becomes single-task feature selection:

argmaxf̃∈{0,1}K|V | c̃
Tf̃ − λf̃TL̃f̃ − η∥f̃∥0.

3 Related Work

Current work on feature selection with network informa-
tion typically concentrates on regularized linear regres-
sion (an excellent overview is given by [30]).

In a single-task context, the Lasso regression
model [28] minimizes the prediction error together with
the ℓ1-norm of the regression parameter vector, which
encourages sparse solutions. This fact popularized the
use of Lasso for feature selection. Note however that
the ℓ1-norm is a convex relaxation of the cardinality
constraint one would really want to enforce.

Group Lasso [31] partitions features into groups
and encourages to select entire such groups via an
ℓ1/ℓ2 penalty. If a graph over the features is available,
groups can be defined as pairs of connected features [15].
However, the number of groups becomes prohibitively
massive on large-scale networks, which grows exponen-
tially once one starts to consider connected subsets of
higher cardinality. A popular instance of Group Lasso
is Elastic Net [34], in which all features belong to a
single group; Elastic Net is particularly suited when the
number of features is larger than that of samples and
when several correlated features should be selected.

Grace (Graph-constrained estimation) [18, 19] adds
a Laplacian graph regularizer analogous to that of
SConES to the objective. While our method is an
association-based approach, Grace aims at minimizing
a prediction error in a Lasso framework. In practice, it
is at least one order of magnitude slower than SConES
on a network of the same size [2]. aGrace (adaptive
Grace) [19] and GOSCAR [30] employ refined types of
network regularizers which allow connected features to
have effects of opposite directions.

Several multi-task versions of Lasso, in which re-
lated tasks are coupled with each other, have been
proposed as well: Multi-Task Lasso [23] uses an ℓ2-
norm on each weight across all tasks to reward solu-
tions, where the same features are selected for all tasks.
Graph-Guided Fused Lasso [16] extends this idea by
coupling the weight vectors of correlated tasks: the more
correlated two tasks are, the more solutions in which
they have similar weight vectors are rewarded. Recent
developments combine multi-task learning with struc-
tured regularization on the input features (e.g. [6, 17]).
Finally, [7] incorporates network-structured feature se-
lection to multi-task learning. This Lasso approach has
the advantage to integrate task covariance, which we
leave to future work. However, it uses a single net-
work over the features and its extension to multiple task-
dependent networks is not straightforward.

Note that “network feature selection” [12] can also
refer to the quite different class of problems where the
objects, not their features, are connected over a graph.
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4 Experiments

We evaluate the proposed method, which we refer to
as Multi-SConES, on both synthetic and real data.
Throughout all experiments, q(v) is set to the absolute
value of Pearson’s correlation coefficient between a
feature v and the response y. This setting is slightly
different from that in [2], where linear SKAT was used.

Environment. We used Mac OS X version 10.7.4
with 2 × 3 GHz Quad-Core Intel Xeon CPU and
16 GB of memory. SConES and Multi-SConES were
implemented in R, version 2.15.1. All experiments were
performed in the R environment.

Comparison partners. We evaluate our method
in both single-task and multi-task contexts. We system-
atically use as a baseline the top-k features ranked by q
alone, where k is set to be the same number of features
as selected by SConES or its multi-task version. This
allows us to evaluate the impact of the structured regu-
larizer. We refer to this method as Correlation Ranking.

In single-task feature selection, we also compare
SConES with two standard feature selection algorithms,
Lasso [28] and Elastic Net [34], as well as three state-of-
the-art structured regularizer methods, group Lasso [27]
(with groups formed by edges as suggested by [15]),
Grace, and aGrace [18, 19]. Grace and aGrace, which
use a Laplacian graph regularizer, can be considered
Lasso equivalents of SConES. In Lasso and Elastic Net,
the network information was just ignored.

In multi-task settings, we compare Multi-SConES
to multi-task Lasso [23] and multi-task Grace. Since
Grace is for single-task feature selection, we construct
an artificial dataset including a given network using the
reformulation in Lemma 1 of [18], followed by applying
multi-task Lasso to the dataset (Supplementary Note C).
As we cannot determine sign changes in the objective
function of aGrace [19, Section 2.2] over multiple tasks,
we do not use a multi-task version of aGrace. Since these
methods cannot treat different networks for different
tasks, we are limited, for our experiments in this paper,
to cases where all tasks share the same network.

In addition, as group Lasso clearly underperforms
Grace in our single-task experiments, we keep Grace
as the sole structured regularized Lasso comparison
partner in the multi-task setting.

We used the glmnet package in R for Lasso, Elastic
Net, and multi-task Lasso, and the SGL package in R
for group Lasso. We implemented Grace and aGrace
in R, based on the reformulation in Lemma 1 of [18].
As this method requires to compute the single value
decomposition (SVD) of the network’s Laplacian, it
does not scale to large networks. We therefore adopt
a new reformulation, replacing the matrix obtained by
SVD with the incidence matrix of the network. It can

easily be shown that this gives exactly the same solution
as Grace. As the incidence matrix can be constructed
in linear time in the number of vertices and edges, this
is a much faster implementation.

Parameter selection. In feature selection, there
is generally no ground truth to validate selected features
in training. Thus one must use a proxy to evaluate
the relative quality of the solutions given by different
parameter values. One such proxy, used in [2], is the
stability of the selection. Another possibility, which we
used here, is to consider predictivity, which is still an
indicator of the quality of the selected features although
we do not wish to optimize it directly.

For every method, we performed 10-fold cross-
validation and selected optimal parameters that yield
the lowest mean squared error (MSE).

Evaluation criteria. Our main goal is to recover
truly causal features, or, in other words, to accurately
classify the features into causal and non-causal. As this
binary classification problem is imbalanced, we evalu-
ate performance using Matthews correlation coefficient
(MCC [22]). MCC ranges from −1 to 1, 1 being best.

In experiments on synthetic data, we also evaluate
the predictivity of the selected features and report MSE
(ranging from 0 to 1, 0 being best) on a test set using
ridge regression on the selected features.

4.1 Evaluation on Synthetic Data. We first eval-
uate (Multi-)SConES on synthetic data. We simulate
four types of gene regulatory networks, models 1 to 4,
which are exactly the same as described in [18] (Sup-
plementary Note D) and use their combination in the
multi-task setting. In each network there are 2, 200 fea-
tures and the first 44 features are causal to the response.
Models 1 and 3 (resp. 2 and 4) are positively (resp. neg-
atively) correlated networks. Model 3 (resp. model 4) is
identical to model 1 (resp. model 2), but the connection
in models 3 and 4 is weaker than in models 1 and 2.

For each model, we generate training and test
datasets of 100 samples each, and report the average
MCC as well as the test MSE over 50 repetitions.

Efficiency. We first analyze the runtime of Multi-
SConES with respect to the number of tasks. We create
multi-task problems with varying number of tasks from
1 to 100 by repeatedly combining model 1 with itself,
and report the runtimes of multi-task Lasso, Multi-
Grace and Multi-SConES in Figure 2a.

Empirically, the runtime of Multi-SConES increases
cubically with the number of tasks. While this is sub-
optimal, in particular compared with Multi-Grace, we
must remember that Multi-Grace cannot use different
networks for different tasks. Moreover, Multi-SConES
is still efficient enough to make it possible to analyze
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Figure 2: (a) Running time with respect to changes in number of tasks under fixed regularization parameters. Data
are mean ± SEM. (b) Feature selection performance with respect to changes in regularization parameters η, λ, and µ.
Note that x-axes for λ and µ have logarithmic scales. The effects of changes in µ are reported for various feature-sharing
scenarios. Two parameters η and λ behave identically independently of the amount of true causal features shared by the
tasks and corresponding plots are therefore not reported. Data are means ± SEM.

hundreds of thousands of features for the order of a
dozen of tasks, which matches the statistical genetics
setting that motivates our study.

In the particular case where we want to select the
same features for all tasks and have a single network
structure over the features, Multi-SConES reduces to a
single-task problem over a network of same size: q(v) is

simply replaced with
∑K

i=1 qi(v) and µ set to zero. In
that case Multi-SConES is as efficient as the single-task
SConES, which is much more efficient than Grace over
the same network (as corroborated by [2]).

Parameter sensitivity. Next, we analyze the
behavior of Multi-SConES with respect to changes in
the regularization parameters λ, η, and µ. For that
purpose, we fix two of those parameters, and run Multi-
SConES for two-task feature selection over models 1
and 2. To understand parameter sensitivity with respect
to the amount of causal features shared across tasks,
we perform experiments for four cases: models 1 and 2
share all, 3/4, half, or none of their features. We use
λ = 1, µ = 1, and η = 0.2 when they are fixed.

Results are shown in Figure 2b. Multi-SConES is
sensitive to η, while more robust to µ and robust to λ if
it is set large enough. The robustness of Multi-SConES
with respect to λ can be understood as follows: once λ
is large enough to cause the true causal features to be
selected, if they form a subnetwork disconnected from
the rest of the network, the corresponding penalty term
becomes 0, and increasing λ will not affect the objective.

Similarly, if the true causal features are identical
across all tasks, the penalty term controlled by µ is also
0, and varying µ will not affect the objective. However,
if the causal features are not shared across all tasks,
setting µ too large enforces the selection of too many
identical features and leads to poor solutions. The
behaviors of λ and η, however, remain unchanged across

these different scenarios and is therefore not reported.
In contrast, MCC (resp. MSE) shows a concave

(resp. convex) response to η, which fits to our theoreti-
cal analysis (Section 2.1, Regularization path), although
here we evaluate solutions in terms of generalization er-
ror on independently generated test datasets.

In practice, this means that in cases well-behaved
enough, we do not need to carefully tune the regulariza-
tion parameters λ and µ. As the entire regularization
path with respect to η can be obtained without increas-
ing the time complexity, finding optimal parameters for
Multi-SConES becomes attractively inexpensive.

Feature selection performance. We then evalu-
ate the feature selection performance of Multi-SConES
in both single-task and multi-task settings (Figure 3).

In the single-task setting, SConES shows much bet-
ter performance than the baseline Correlation Rank-
ing. This means that the penalty function g in Equa-
tion (2.2) works well to select connected features. More-
over, SConES outperforms all the other methods in
terms of MCC, showing that it is better at recovering
true causal features. Only Lasso (and, in one case, Elas-
tic Net) outperforms SConES in terms of predictivity of
the selected features. However the features it selects are
too sparse and disconnected, resulting in notably worse
MCC scores and difficulties in interpretability. These
results are consistent with the behavior reported in [2].

To evaluate Multi-SConES, we create multi-task
problems by combining the models. More precisely,
for models 1 and 2, two-task problems are created by
combining both models, and three-task problems by
combining them with model 3; for models 3 and 4, two-
task problems are creating by combining both models,
and three-task problems by combining them with model
1. The four-task problem combines all four models.

Multi-SConES outperforms SConES in all cases.
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Figure 3: Feature selection performance for synthetic data. MCC (left column) should be maximized and MSE
(right column) should be minimized. CR: the ranking of correlations (baseline), LA: Lasso, EN: the elastic net,
GL: group Lasso, GR: Grace, AG: aGrace, and SC: SConES. Data are means ± SEM.

Moreover, performance (MCC and MSE) improves with
the number of tasks. This confirms that our multi-task
formulation on feature networks is effective compared
to solving each task independently. Furthermore, Multi-
SConES achieves significantly better MCC than all of its
comparison partners and is also now superior in terms
of predictivity. Our method is therefore effective for
multi-task feature selection on networks.

We also examine Multi-SConES when causal fea-
tures are not exactly shared. For each data model, we
perform two-task feature selection (models 1 + 2 and
3+ 4) assuming that a fraction σ (σ = 3/4, 1/2 or 0) of
the causal features are shared between both tasks. Re-
sults are shown in Figure 4. Once again, Multi-SConES
clearly outperforms all other methods in terms of MCC.
The features it selects are also more predictive, except
for those selected by multi-task Lasso when half of the
features are shared between tasks. The more features
are shared, the better Multi-SConES is at recovering
causal, explanatory features. This holds for all multi-
task methods and is typical in multi-task learning.

4.2 Multi-Locus Association Mapping. As a real
world application, we performed large-scale multi-locus
mapping of Arabidopsis thaliana flowering time pheno-
types. Our goal here is to uncover which SNPs are asso-
ciated with flowering time, using a network over SNPs
derived from biological properties.

Data preparation. We used the Arabidopsis
thaliana GWAS data1 collected by [1]. This dataset con-
tains 216,130 SNPs (features) for 199 individuals, with
missing values, and there are 23 flowering phenotypes
in total. It is well known that A. thaliana is susceptible
to population structure confounding, that is, the exis-
tence of subpopulations (clusters) of individuals due to,
for instance, different demographic histories or diverse
environmental influences, induces fake correlations be-
tween genotypes and phenotypes. We corrected it using
principal component analysis as in [2, 24].

To evaluate the quality of the selected SNPs (fea-
tures), we used the 282 candidate (causal) genes for flow-

1https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb/

genomic-polymorphism-data-in-arabidopsis-thaliana
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Figure 4: Feature selection performance in two tasks for
synthetic data. A fraction σ (= 3/4, 1/2 or 0) of the
causal features are shared. Data are means ± SEM.

ering time listed in [5, (Table 12 in Dataset S1)], orig-
inally provided in [1], as an approximation of the gold
standard. For each selected SNP, we checked whether
or not it is located within 20 kb of one of the 282 candi-
date genes as in [2, 5]. If a SNP belongs to more than
two genes, we assigned it to the closest gene.

We derived a network over SNPs from the
A. thaliana protein-protein interaction network between
genes from TAIR2 (The Arabidopsis Information Re-
source). SNPs were connected with a weight of 1 if
they belong to the same gene or connected genes. In
addition, we connected each pair of SNPs adjacent on
the genomic sequence with a small weight of 0.01.

Results. For each of two phenotypes (2W and
LDV), which have high correlations to other phenotypes
in average, we picked two additional phenotypes they
are highly correlated with (4W and FTGH for 2W, 0W
and FT10 for LDV) and checked whether or not these
additional phenotypes improve performance of Multi-
SConES and its competitors.

For each method, we determined the optimal pa-
rameters by 10-fold cross-validation and run it on the
full data to get a final set of selected SNPs. We re-
port MCC as well as the ratios of candidate SNPs (resp.
genes) retrieved with respect to the number of selected
SNPs (resp. genes) in Table 1.

2http://www.arabidopsis.org/

Once again, Multi-SConES shows much better per-
formance in terms of MCC than its competitors. In
addition, the proportion of SNPs near candidate genes
among the selected SNPs is higher for Multi-SConES
than those for the other methods. Finally, combin-
ing several phenotypes helps recovering more candidate
causal genes. Altogether, this means that our multi-
task feature selection strategy can also be effectively
employed for the important real-world problem of multi-
locus association mapping in A. thaliana.

5 Conclusion

In this paper we have proposed Multi-SConES, a new
formulation of multi-task feature selection with multi-
ple network regularizers. We directly optimize feature
relevance scores and exactly solve the formulation by
maximum flow algorithms. Compared to the typical
structured Lasso approaches, Multi-SConES shows im-
proved ability to discover causal features in simulated
and real-world experiments.

Unlike existing structured sparsity multi-task fea-
ture selection methods, Multi-SConES can use different
networks for different tasks, and yields a clear, binary
classification of features. Another attractive property of
our approach is the possibility to incorporate cardinality
constraints on the size of the solution set.

Currently, we model the relationship between tasks
with a single parameter µ, which controls how coupled
the solutions are. Some multi-task Lasso models can
include more detailed structures of correlation between
tasks (e.g. [16]). Others also consider relationships
between tasks using a task covariance matrix [7]. In
future work, we will study how to integrate these types
of more complex task relationships into Multi-SConES.

Another interesting direction is to incorporate proxi-
mal methods with structured norms, which is also shown
to be related to the maximum flow problem [20].
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