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A Network Transformation for Maximum Flow
Algorithms

We explain how our single-task formulation

argmax
S⊂V

f(S)− g(S),(A.1)

can be solved by the maximum flow algorithm. Given
a network G = (V,E), let us introduce a source node
s and a sink node t and construct a transformed s/t-
network M(G) = (V ′, E′) such that V ′ = V ∪{s, t} and
E′ = E ∪ S ∪ T , where

S =
{
{s, v} | v∈V, q(v) > η

}
,

T =
{
{t, v} | v∈V, q(v) < η

}
.

In addition, we set the capacity c : E′ → R+ of the
edges in M(G) to

c({v, u}) =

{
| q(v)− η | if u ∈ {s, t} and v ∈ V,

λw({v, u}) otherwise.

Figure S1 shows a simple example of a network G and
its s/t-network.

Theorem A.1. ([S1]) Let G be a network. The mini-
mum s/t cut of the network M(G), which gives the so-
lution of the maximum flow problem from the source s
to the sink t, coincides with the solution of the prob-
lem (A.1) on G.

The proof is available in [S1] and can be derived
similarly as in [S2]. Thus a maximum flow algorithm
can be directly applied to solve the problem (A.1).

B Conditions for the Parametric Maximum
Flow Algorithm

The anti-monotonicity of η, that is,

S(η) ⊂ S(η′) if and only if η > η′,
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†Zentrum für Bioinformatik, Eberhard Karls Universität
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Figure S1: Example of a network (left) and its cor-
responding s/t-network (right) for the maximum flow
problem. Numbers in circles denote values q and those
on edges denote weights (left) and capacities (right). In
this example, λ = 0.5 and η = 3.

is derived from noticing that η only affects the capacities
on edges connected the source or the sink on the s/t
network M(G).

Moreover, the following three properties hold:

1. The capacity c({s, v}) is a non-decreasing function
of −η for all v ∈ V .

2. The capacity c({t, v}) is a non-increasing function
of −η for all v ∈ V .

3. The capacity c({v, u}) is constant for all v, u ∈ V .

These properties exactly coincide with the assumptions
necessary to the application of the parametric maximum
flow algorithm.

C Multi-Task Lasso and Multi-Task Grace

Given a design matrix X ∈ RN×|V | and K response
vectors yk, the multi-task Lasso solves

argmin
B∈R|V |×K

1

2N

K∑
k=1

||yk −Xβk||22 + λ ||B||ℓ1/ℓ2 ,(C.2)

where the k-th column of B is the parameter vector βk

of the corresponding task and the ℓ1/ℓ2-norm of B is
given by

||B||ℓ1/ℓ2 =

|V |∑
v=1

√√√√ K∑
k=1

β2
k,v =

|V |∑
v=1

∥βv∥2 .



Grace can be extended to multi-task learning with
a single network over the features as follows. Given a
design matrix X ∈ RN×|V |, K response vectors yk, a
network over the |V | features described by its Laplacian
L, and two parameters λ1, λ2 ∈ R. We formulate Multi-
Grace for K tasks as

argmin
B∈R|V |×K

K∑
k=1

(
||yk −Xβk||22 + λ1 ||B||ℓ1/ℓ2
+λ2 β

⊤
k Lβk

)
.

(C.3)

Following the reasoning from Lemma 1 of [S3], this
is equivalent to the following multi-task Lasso problem:

argmin
B∗∈R|V |×K

K∑
k=1

(
||y∗

k −X∗β∗
k||

2
2 + γ ||B∗||ℓ1/ℓ2

)
,

where γ = λ1/
√
1 + λ2 and for each task, (y∗

k,X
∗) is an

artificial dataset defined by

X∗ = (1 + λ2)
−1/2

(
X√
λ2S

⊤

)
, y∗

k =

(
yk

0|V|

)
,

where S is such that SS⊤ = L. If (β̂∗
k)k=1,...,K is

the solution to this multi-task Lasso problem, then the
solution to Equation C.3 is given by β̂k = β̂∗

k/
√
1 + λ2.

Li and Li [S3] proposed to use a singular value
decomposition to obtain S, but the Lemma also holds
if S is replaced by the incidence matrix of the network.
As it can be constructed in linear time in the number
of vertices and edges, this makes for a much faster
implementation of Grace, aGrace and Multi-Grace. We
used this implementation in our experiments.

If the different tasks have different networks, this
derivation does not apply and solving a multi-task
version of Grace is not straightforward any more.

D Generation of Synthetic Data

There are 2, 200 features in total composed of 200
transcription factors (TFs) and 2, 000 genes. Each TF
is connected to 10 regulatory target genes. That is, we
have a network G = (V,E) such that

V =
200∪
i=1

{ti} ∪Gi with |Gi| = 10, and

E =
200∪
i=1

Ei with Ei = {{ti, v} | v ∈ Gi},

which includes 200 connected subnetworks. Moreover,
for each TF, an expression level x is generated from the
normal distribution N(0, 1), and the expression levels
for its regulatory genes are generated fromN(0.7x, 0.51).
Thus the correlation between a TF and its regulatory
genes is 0.7. Finally, we simulate a response vector
from the linear model y = Xβ + ϵ with i.i.d. noise
ϵ ∼ N(0, σ2) and σ2 =

∑
i β

2
i /4.

We prepare four models with different feature
weights β and use their combination in the multi-task
setting. In model 1,

β =

(
5,

5√
10

, . . . ,
5√
10

,−5,
−5√
10

, . . . ,
−5√
10

,

3,
3√
10

, . . . ,
3√
10

,−3,
−3√
10

, . . . ,
−3√
10

, 0, . . . , 0

)
.

Thus the first four TFs and their regulatory genes, that
is to say 44 features in total, are causal to the response.
Note that there is no edge between causal and non-
causal features. Model 2 differs from model 1 in that the
signs of the first three target genes in each subnetwork
are flipped to their opposites, that is, For example,
β2, β3, β4 = −5/

√
10 and β5, β6, . . . , β11 = 5/

√
10. This

models a negatively correlated network. Model 3 (resp.
model 4) is identical to model 1 (resp. model 2), except
that all

√
10 in β are replaced with 10. Therefore the

connection between TF and genes in models 3 and 4 is
weaker than in models 1 and 2.
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