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Machine learning

— Learn/build/define a statistical model using data
— Model: a function of input variables
def model (x):
f:RP >R

T ... return ...



Supervised machine learning problems

— Supervised machine learning: learn a predictive model

Labeled samples ——| ML algorithm

— Predictive model

— Example 1 (classification): Predict whether a DNA sequence is an enhancer or not

— Example 2 (regression): Predict plant yield from the expression of genes



Unsupervised machine learning problems

Unsupervised machine learning: data exploration

Unlabeled samples ——| ML algorithm

— Samples representation

Example 1 (dimensionality reduction): project SNP data on principal components

Example 2 (clustering): find groups of cells with similar SCRNA-seq patterns

Example 3 (generative modeling/density estimation): generate plausible DNA sequences



Why use supervised machine learning in genomics?

— For the predictions

— For the interpretation

— Example 1: Predict whether a sample is a case or a control
— Example 2: Predict the residual tumor size after treatment



How machine learning works

(A very simplified view)

— (Choose a family of models
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How machine learning works

(A very simplified view)

— (Choose a family of models
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Random forest Neural network

— Empirical risk minimization: Use the data to find, in this family, a model with minimal error.



Machine learning works best ...

. when the data is really big

ImageNet: 14 million images

Llama4 training set: 30 trillion tokens

. when the nature of the data is well understood
=> good representations/modeling/architecture

. when the nature of the problem is well understood

humans can do it

. for making predictions rather than explaining how they were made

Genomics does not fit this picture very well!



Talk outline

. Many features, few samples: the example of genotype-to-phenotype studies

Il. Good representations of genomic data
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Which genomic features explain the phenotype?

— Typically fewer samples than genomic features (gene expressions, SNPs, etc)



State of the art; Statistical tests

Perform a statistical test of association between
each feature and the phenotype.
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Simulation
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Simulation: linear regression
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Simulation: linear regression
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Regularization

— Empirical risk minimization: find a model with minimal error on the training data

— Regularization: force the model to respect some additional constraints
— Weight decay: don't allow the model parameters to take large values
(or ridge/Tikhonov/¢; reqularization)
— Sparsity: don't allow too many of the model parameters to have non-zero values
E.g.: Lasso (or ¢; regularization)

V. Tozzo et al. Where do we stand in regularization for life science studies? Journal of Computational Biology 2022
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Simulation; Lasso
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Simulation; Lasso
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Reqularization to integrate prior biological knowledge

— Goals:

— Make the model consistant with previously established knowledge
— Help find a good model
— Increase interpretability

— Prior biological knowledge has structure:

— Groups: genes belonging to the same pathway / requlated by the same transcription factor;
SNPs belonging to the same LD block

— Graphs: biological networks

V. Tozzo et al. Where do we stand in regularization for life science studies? Journal of Computational Biology 2022
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Group-based reqularization

([])(H)([ND' Variants of the Lasso encourage the sparsity
pattern to respect a given groups structure:
([N%%g e features that belong to the same provided group
4 will tend to be selected together
qDIDADUD>
(0000000000
— Group Lasso [YLO5]

— Overlapping Group Lasso [JOV09]
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Simulation: Group Lasso
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Simulation: Group Lasso

— 100 samples
1000 features 10 of which influence the phenotype and form two of the provided groups
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SMuGLasso for GWAS in diverse populations

— G = Group: Group SNPs by linkage SNPs

disequilibrium blocks [DAN15] < ’
0000000000000O0OCGOCGOCOOOOS M)!
— Split samples by genetically homogeneous 0000000000000000000006 My
population (PCA + clustering) — tasks e0o00c0cse00000000000 Fn}
— Mu = Multitask: same blocks are selected LD block
across tasks [OTJ09]

— S =Sparse: some blocks are task-specific

A. Nouira & C.-A. Azencott. Sparse Multitask group Lasso for genome-wide association studies. PLoS Comp Bio 2025
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SMuGLasso has better recall than other methods

Simulation with GWAsimulator [LLO7]
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A. Nouira & C.-A. Azencott. Sparse Multitask group Lasso for genome-wide association studies. PLoS Comp Bio 2025


http://dx.doi.org/10.1101/2024.12.20.629593

SMuGLasso identifies disease genes
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DRIVE dataset [Hun+10] TPR1
— 13846 breast cancer cases, 14 435 controls MRPS30
— 312 237 SNPs after quality control MAPSKL
— PCA + kmeans — 2 populations: SFTD?
— Pop1 (USA, Australia, Denmark) Al
— Pop2 (USA, Cameroon, Nigeria, Uganda) EBF1
FGFR2
TOX3
MKL1
[ GWAS (9)

[ meta-GWAS (17) [ other evidence (8)

A. Nouira & C.-A. Azencott. Sparse Multitask group Lasso for genome-wide association studies. PLoS Comp Bio 2025
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Graph-based regularization

Variants of the Lasso encourage the sparsity
pattern to respect the structure of a given graph:
<:>* Q features that are connected on the provided graph
will tend to be selected together

— Network-constrained Lasso [LLO8]
— Graph Lasso [J0V09]
— Graph-guided fused Lasso [KSX09]

H. Climente-Gonzalez et al. A network-guided protocol to discover susceptibility genes in genome-wide association studies. STAR Prot 2023
H. Climente-Gonzalez et al. Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer. PLoS Comp Bio 2021
C.-A. Azencott. Network-guided biomarker discovery. Lecture Notes in Computer Science 2016
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ll. Good representations

22



Representation learning

— Good representations = features from which learning is ‘easy”

— If we cannot handcraft good features using domain knowledge, can we learn them?

o
D})—) prediction
¢

new representation

input features



Foundation models

— LOTS of broad data
— LAION-5B: 5.85 billion image-text pairs
— GPT-3 was trained on 570 GB of text

— self-supervision:
— Masked language modeling, next sentence prediction
— Reconstructing a blurred, partially erased or scrambled image

— Fine-tuning: learned representations can then be used for any downstream task

24



Foundation models in genomics

— Pre-training = masked language modeling

— NucleotideTransformer [DT+24]

trained on 4k genomes (3008 6bp tokens)
50M to 2.5B parameters

12 kbp context length

trained on 16 x 8 A100 GPUs (~ 20 000 €)

Try it out: https://hclimente.eu/blog/hf-
transformers/

— Evo2 [Bri+25]

trained on up 8.8 Tbp (1 token = 1bp)
7 to 40 B parameters
1 million bp context length

training took 2.25 x 1024 FLOPS (on par
with Llama 3.1)

25
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Variant pathogenicity prediction

— Evo2 predicts BRAC1 variant pathogenicity
— without training!
— “unnatural” sequence = pathogenic

26



— Evo2 predicts BRAC1 variant pathogenicity

— So does PhyloP [Pol+09]

Variant pathogenicity prediction

— without training!

— “unnatural” sequence = pathogenic

— conservation score

— number of parameters: 2

much better than NucleotideTransformer

BRCAT1 variants  Alikelihood from reference Variant
(coding, to mutated sequence Predict functionality

noncoding)
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Closing remarks

When evaluating a machine learning model, question
— Whether the evaluation data sets are appropriate

— Whether the evaluation metrics are appropriate

— Whether the gain in performance is good enough
— appropriate baselines and comparison partners

— worth the effort/resources

Keep the use case in mind!

27
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Empirical risk minimization

— The idea behind (most) supervised machine learning algorithms:

Find a model f in the hypothesis space F that minimizes the empirical risk.

1 n
min — L(y;, f(Z;
fe]—'n; (?Jlf( )
0SS
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Empirical risk minimization

— The idea behind (most) supervised machine learning algorithms:

Find a model f in the hypothesis space F that minimizes the empirical risk.

1 n
min — L(y:, f(%;
fe]—'n; (?Jlf( )
0SS

— Examples of losses:
— For aregression problem, the quadratic loss

Ly [(@) = (y = [(@)

— For a binary classification problem, the logistic loss

L(y, (7)) = —ylog(f(7)) — (1 — y)log(1 — /(7))
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Regularized empirical risk minimization

— ldea: impose a priori constraints on the solution of the empirical risk minimization problem

— Parametric models: F = {fz; @ € R4}

1 n
min — L iy Jo J_fi +)\ Q(w
miny 23 L0 fo() (@)
4 reqularizer

loss
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Example: Lasso

Linear model: f(7) = (@, 7) = wo + Y_7_; w;a;
Regularized empirical risk minimization

wWERP 1, 4 ——

1 n
min — > L(y, (B,%) + A Qi)
! regularizer

loss
Prior knowledge / a priori constraints: few features are relevant.
Lasso: Q(w) = [[wl], = D77 [w] [Tib96]

Sparsity: many features are assigned a weight of 0. They can be removed from the model.
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Regularization coefficient A

min — L(y;, (0, 7)) + A Q(w
wWERP Z Yi \(,_2
regularizer

loss

— )\ controls the amount of reqularization

— Typically set by grid search + cross-validation: {number
of folds} x {number of values on the grid} experiments

— For the lasso, efficient ways to get the entire
regularization path { @y for A € {Amin, - - -, Amax} }

coefficients

103 104 103

102
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Group-based reqularization

1 n
in — » L(y;, (0, Z; A
min n; (i, (, F)) +

loss

— Given a way of grouping the p features in G groups G4, . . .,

to encourage the selection of only a few groups

— Group Lasso
G

Qgroup ( Z Py

=1

— Overlapping Group Lasso

(%mw<m)
———

group-level regularizer

G, each of size p,, define (2,

[YLOS]

Zw

Jj€Gy

[JOV09]
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Multitask regularization

géllé} Z ng ZE 7 t)>) + A Dtasks(“ ) ~~~~~ 77’“'))

task regularizer

loss

— Given T related tasks, define €2, 50 as to solve the 7" empirical risk minimization problems
in such a way that the same features are selected across tasks.

— Multitask Lasso [0TJ09]
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MuGLasso

Multitask Group Lasso:

— multitask group-level sparsity
— the same groups are selected for all tasks

T ng
geii%, ;it;lﬂ(ygt),@(tﬁt +)‘Z\/EZZ< <z>)

jeg, t=1

loss mutltitask group-level sparsity
- If T"=1 — group Lasso

- fG=pandG,...,G, ={1},...,{p} — multitask Lasso

A. Nouira & C.-A. Azencott. Multitask group Lasso for genome-wide association studies in diverse populations. PSB 2022
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SMuGLasso

Sparse Multitask Group Lasso:

the same groups are selected for all tasks

among those, some groups can be task-specific

T ng
. I o z
iy, 303200 60 A) 3 v S 3 () 43
e = ™M i jeg, t=1 jeg, t=
loss mutltitask group-level sparsity task-level sparsity

A. Nouira & C.-A. Azencott. Sparse Multitask group Lasso for genome-wide association studies. PLoS Comp Bio 2025
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Graph-based regularization

1 - . -
mn—g L(y;, (W0, T3)) + As |||, + Ag Qgrapn ()
i=1 v v

HERP 7, 4

~ g sparsity connectivity
loss

— Givenagraph G = (V, £) of p nodes over the features, define €2, to encourage the sparsity
pattern to respect the structure of G.
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Graph-based regularization

1 - . .
i 32 L0k (D) + e [Ty + Ay Qo
—~ < sparsity connectivity

loss

— Givenagraph G = (V, £) of p nodes over the features, define €2, to encourage the sparsity
pattern to respect the structure of G.

— Graph-fused Lasso [KSX09]
Qgrapn () = Z |wj — wy,

(vj,v)€E

— Network-constrained Lasso [LLO8]

Qgraph<ﬂ>) = wTLw - Ajk(wj — wk)2

(vj,or)€E
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Graph-based regularization

min *ZE Yi, (0, ) + As |[0]]; 4+ Ay Qgrapn (@)
4 sparsity connectivity
loss

— Givenagraph G = (V, £) of p nodes over the features, define €2, to encourage the sparsity

pattern to respect the structure of G.
— Graph Lasso: overlapping group lasso with edges as groups [JOVO9]

€] . .
Qg (@) = mf . SNBlly  Br € RP st fiy # 0iff node j in edge k
By, 2 h=1 Bk k=1
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Network-constrained Lasso

1 n
1

WERP N £
i=

loss

Can be solved as a Lasso on transformed data

X*: 1 ( X

(n+m)
T, \//\gST> €R -

where S € R™*P sychthat L = SS T

with regularization parameter

As |||, +Ag @' L
SN~ — L.
sparsity connectivity

s — — %
T and then @ = /1 4+ ;@
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Network-constrained Lasso

1 n
1

WERP N £
i=

loss

Can be solved as a Lasso on transformed data

X
Xt = L _ R(ntm)xp
V1A (\/ /\QST> ©

where S € R™*P sychthat L = SS T

with regularization parameter

— Defining S:

As ||@]], + Ay @ Ly
SN~ — L.
sparsity connectivity

s — — %
T and then @ = /1 4+ ;@

- Option1(m =p)and S = UA/?with L = UAU" — runtime issues @

- Option 2 (m = |£]) and S is the incidence matrix of G — memory issues © 40
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