8th Curie Course on Computational Systems Biology of Cancer

Machine learning for genomics

Chloé-Agathe Azencott

Centre for Computational Biology (CBIO)
Mines Paris – PSL, Institut Curie & INSERM U1331
PR[AI]RIE-PSAI

September 22, 2025

http://cazencott.info chloe-agathe.azencott@minesparis.psl.eu

@cazencott@lipn.info

Machine learning

- Learn/build/define a statistical model using data
- Model: a function of input variables

$$f \colon \mathbb{R}^p \to \mathbb{R}$$
$$\vec{x} \mapsto \cdots$$

```
def model(x):
    ...
    return ...
```

Supervised machine learning problems

Supervised machine learning: learn a predictive model

- Example 1 (classification): Predict whether a DNA sequence is an enhancer or not
- Example 2 (regression): Predict plant yield from the expression of genes

Unsupervised machine learning problems

Unsupervised machine learning: data exploration

- Example 1 (dimensionality reduction): project SNP data on principal components
- Example 2 (clustering): find groups of cells with similar scRNA-seq patterns
- Example 3 (generative modeling/density estimation): generate plausible DNA sequences

Why use **supervised** machine learning in genomics?

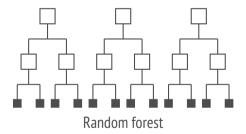
- For the predictions
- For the interpretation
 - Example 1: Predict whether a sample is a case or a control
 - Example 2: Predict the residual tumor size after treatment

(A very simplified view)

Choose a family of models

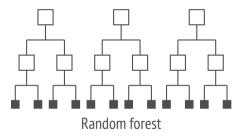
(A very simplified view)

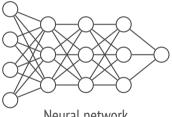
Choose a family of models



(A very simplified view)

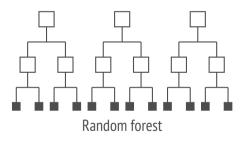
Choose a family of models

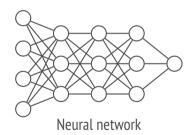




(A very simplified view)

Choose a family of models





Empirical risk minimization: Use the data to find, in this family, a model with minimal error.

Machine learning works best ...

- ... when the data is really big
 - ImageNet: 14 million images
 - Llama4 training set: 30 trillion tokens
- ... when the **nature of the data** is well understood
 - ⇒ good representations/modeling/architecture
- ... when the **nature of the problem** is well understood humans can do it
- ... for **making predictions** rather than **explaining how** they were made

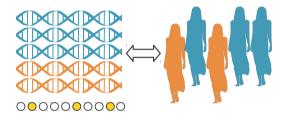
Genomics does not fit this picture very well!

Talk outline

- I. Many features, few samples: the example of genotype-to-phenotype studies
- II. Good representations of genomic data

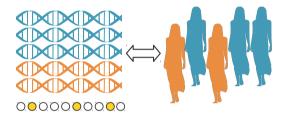
I. Many features, few samples

Genotype-to-phenotype studies



Which genomic features explain the phenotype?

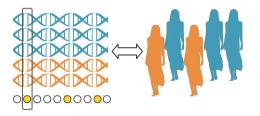
Genotype-to-phenotype studies



Which genomic features explain the phenotype?

Typically fewer samples than genomic features (gene expressions, SNPs, etc)

State of the art: Statistical tests



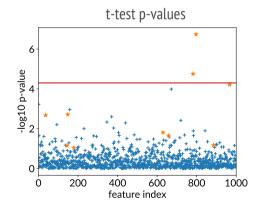
Perform a **statistical test of association** between **each feature** and the phenotype.

Simulation

$$- y = \sum_{j=1}^{1000} w_j x_j + \varepsilon$$

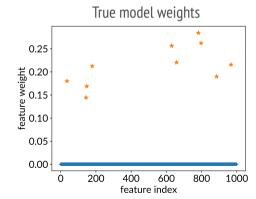
Simulation

$$- y = \sum_{j=1}^{1000} w_j x_j + \varepsilon$$



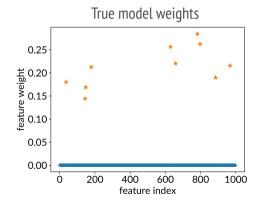
Simulation: linear regression

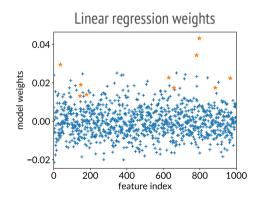
$$- y = \sum_{j=1}^{1000} w_j x_j + \varepsilon$$



Simulation: linear regression

$$- y = \sum_{j=1}^{1000} w_j x_j + \varepsilon$$





Regularization

- Empirical risk minimization: find a model with minimal error on the training data
- Regularization: force the model to respect some additional constraints
 - Weight decay: don't allow the model parameters to take large values (or ridge/Tikhonov/ ℓ_2 regularization)
 - **Sparsity**: don't allow too many of the model parameters to have non-zero values E.g.: Lasso (or ℓ_1 regularization)

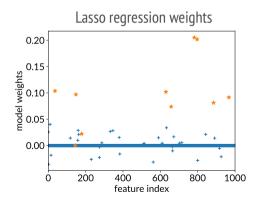
Simulation: Lasso

$$- y = \sum_{j=1}^{1000} w_j x_j + \varepsilon$$

Simulation: Lasso

$$- y = \sum_{j=1}^{1000} w_j x_j + \varepsilon$$



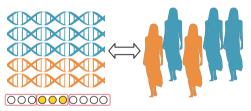


Regularization to integrate prior biological knowledge

– Goals:

- Make the model consistant with previously established knowledge
- Help find a good model
- Increase interpretability
- Prior biological knowledge has structure:
 - Groups: genes belonging to the same pathway / regulated by the same transcription factor;
 SNPs belonging to the same LD block
 - Graphs: biological networks

Group-based regularization



Variants of the **Lasso** encourage the sparsity pattern to **respect a given groups structure**: features that belong to the same provided group will tend to be selected together

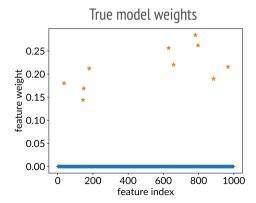
- Group Lasso [YL05]
- Overlapping Group Lasso [JOV09]

Simulation: Group Lasso

100 samples1 000 features

10 of which influence the phenotype and form two of the provided groups

$$- y = \sum_{j=1}^{1000} w_j x_j + \varepsilon$$

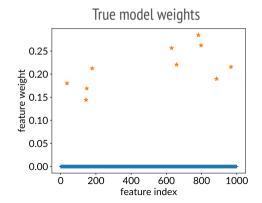


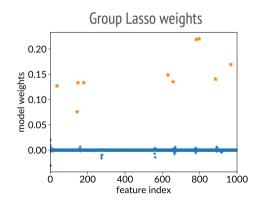
Simulation: Group Lasso

100 samples

1 000 **features** 10 of which **influence** the phenotype and **form two of the provided groups**

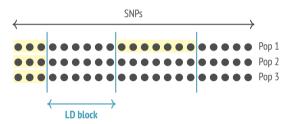
$$- y = \sum_{j=1}^{1000} w_j x_j + \varepsilon$$





SMuGLasso for GWAS in diverse populations

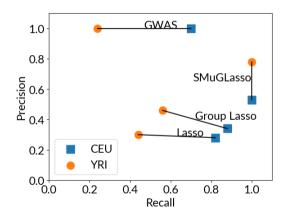
- G = Group: Group SNPs by linkage disequilibrium blocks [DAN15]
- Split samples by genetically homogeneous population (PCA + clustering) → tasks
 - Mu = Multitask: same blocks are selected across tasks [OTJ09]
 - S = Sparse: some blocks are task-specific



SMuGLasso has better recall than other methods

Simulation with GWAsimulator [LL07]

- 2 populations from HapMap3:
 - CEU (1300 cases, 1700 controls)
 - YRI (400 cases, 600 controls)
- 50 000 SNPs
 - 200 disease-causing SNPs
 - 50 CEU-specific SNPs
 - 50 YRI-specific SNPs



SMuGLasso identifies disease genes

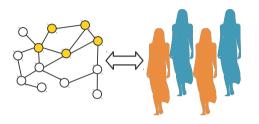
DRIVE dataset [Hun+10]

- 13 846 breast cancer cases, 14 435 controls
- 312 237 SNPs after quality control
- − PCA + kmeans \rightarrow 2 populations:
 - Pop1 (USA, Australia, Denmark)
 - Pop2 (USA, Cameroon, Nigeria, Uganda)

ITPR1	ASTN2	FTO	ccn	D.4	
MRPS30	CCDC170	GRHL1	-	SSBP4 TGFBR2	
MAP3K1	CDYL2	KCNU1		TNRC6B	
SETD9	DIRC3	NEK10		ZMIZ1	
MIER3	ELL	PAX9		ZNF365	
EBF1	ESR1	PTHLH	.Н		
FGFR2	ADSL	NUP205			
	CACNA1I	PPFIBP1		HRSP12 REP15	
TOX3	CCDC91	POP1		HR S	
MKL1	HK1	SGSM	13		

GWAS (9) meta-GWAS (17) other evidence (8)

Graph-based regularization



Variants of the **Lasso** encourage the sparsity pattern to **respect the structure of a given graph**: features that are connected on the provided graph will tend to be selected together

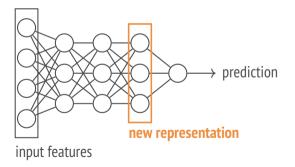
- Network-constrained Lasso [LL08]
- Graph Lasso [JOV09]
- Graph-guided fused Lasso [KSX09]

H. Climente-González et al. A network-guided protocol to discover susceptibility genes in genome-wide association studies. STAR Prot 2023
H. Climente-González et al. Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer. PLoS Comp Bio 2021
C.-A. Azencott. Network-guided biomarker discovery. Lecture Notes in Computer Science 2016

II. Good representations

Representation learning

- Good representations = features from which learning is "easy"
- If we cannot handcraft good features using domain knowledge, can we learn them?



Foundation models

- LOTS of broad data
 - LAION-5B: 5.85 billion image-text pairs
 - GPT-3 was trained on 570 GB of text
- self-supervision:
 - Masked language modeling, next sentence prediction
 - Reconstructing a blurred, partially erased or scrambled image
- Fine-tuning: learned representations can then be used for any downstream task

Foundation models in genomics

- Pre-training = masked language modeling
- NucleotideTransformer [DT+24]
 - trained on 4k genomes (300B 6bp tokens)
 - 50M to 2.5B parameters
 - 12 kbp context length
 - trained on 16 ×8 A100 GPUs (~ 20 000 €)
 - Try it out: https://hclimente.eu/blog/hftransformers/

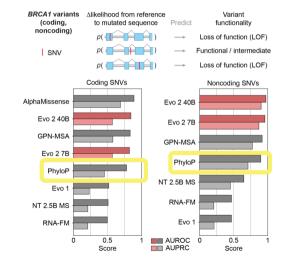
- **Evo2** [Bri+25]
 - trained on up 8.8 Tbp (1 token = 1bp)
 - 7 to 40 B parameters
 - 1 million bp context length
 - training took 2.25 $\times 10^{24}$ FLOPS (on par with Llama 3.1)

Variant pathogenicity prediction

- Evo2 predicts BRAC1 variant pathogenicity
 - without training!
 - "unnatural" sequence = pathogenic

Variant pathogenicity prediction

- Evo2 predicts BRAC1 variant pathogenicity
 - without training!
 - "unnatural" sequence = pathogenic
- So does PhyloP [Pol+09]
 - conservation score
 - number of parameters: 2
- much better than NucleotideTransformer



Closing remarks

When **evaluating** a machine learning model, question

- Whether the evaluation data sets are appropriate
- Whether the evaluation metrics are appropriate
- Whether the gain in performance is good enough
 - appropriate baselines and comparison partners
 - worth the effort/resources

Keep the use case in mind!

References I

- [Aze+13] Chloé-Agathe Azencott et al. "Efficient network-guided multi-locus association mapping with graph cuts". In: Bioinformatics 29.13 (2013), pp. i171i179. ISSN: 1367-4811. DOI: 10.1093/bioinformatics/btt238.
- [Aze16] Chloé-Agathe Azencott. "Network-guided biomarker discovery". In: Machine Learning for Health Informatics. Springer International Publishing, 2016, pp. 319336. DOI: 10.1007/978-3-319-50478-0_16.
- [Bri+25] Garyk Brixi et al. "Genome modeling and design across all domains of life with Evo 2". In: (2025). DOI: 10.1101/2025.02.18.638918.
- [CG+21] Héctor Climente-González et al. "Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer". In: PLOS Computational Biology 17.3 (2021), e1008819. DOI: 10.1371/journal.pcbi.1008819.
- [CGAY23] Héctor Climente-González, Chloé-Agathe Azencott, and Makoto Yamada. "A network-guided protocol to discover susceptibility genes in genome-wide association studies using stability selection". In: STAR Protocols 4.1 (2023). DOI: 10.1016/j.xpro.2022.101998.
- [DAN15] Alia Dehman, Christophe Ambroise, and Pierre Neuvial. "Performance of a blockwise approach in variable selection using linkage disequilibrium information". In: *BMC Bioinformatics* 16.1 (2015). DOI: 10.1186/s12859-015-0556-6.
- [DT+24] Hugo Dalla-Torre et al. "Nucleotide Transformer: building and evaluating robust foundation models for human genomics". In: Nature Methods 22.2 (2024), pp. 287297. DOI: 10.1038/s41592-024-02523-z.

References II

- [Hun+10] David J. Hunter et al. Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Oncoarray Genotypes. 2010. URL: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001265.v1.p1.
- [JOV09] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. "Group lasso with overlap and graph lasso". In: *Proceedings of the 26th Annual International Conference on Machine Learning*. ICML 09. ACM, 2009, pp. 433440. DOI: 10.1145/1553374.1553431.
- [KSX09] Seyoung Kim, Kyung-Ah Sohn, and Eric P. Xing. "A multivariate regression approach to association analysis of a quantitative trait network". In: *Bioinformatics* 25.12 (2009), pp. i204i212. DOI: 10.1093/bioinformatics/btp218.
- [LL07] Chun Li and Mingyao Li. "GWAsimulator: a rapid whole-genome simulation program". In: *Bioinformatics* 24.1 (2007), pp. 140142. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btm549.
- [LL08] Caiyan Li and Hongzhe Li. "Network-constrained regularization and variable selection for analysis of genomic data". In: *Bioinformatics* 24.9 (2008), pp. 11751182. DOI: 10.1093/bioinformatics/btn081.
- [NA] Asma Nouira and Chloé-Agathe Azencott. "Multitask group Lasso for Genome Wide association Studies in diverse populations". In: *Pacific Symposium on Biocomputing 2022*, pp. 163–174. DOI: 10.1142/9789811250477_0016.
- [NA25] Asma Nouira and Chloé-Agathe Azencott. "Sparse multitask group Lasso for genome-wide association studies". In: *PLOS Computational Biology* 21.9 (2025), e1012734. DOI: 10.1371/journal.pcbi.1012734.

References III

- [OTJ09] Guillaume Obozinski, Ben Taskar, and Michael I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: Statistics and Computing 20.2 (2009), pp. 231252. DOI: 10.1007/s11222-008-9111-x.
- [Pol+09] Katherine S. Pollard et al. "Detection of nonneutral substitution rates on mammalian phylogenies". In: Genome Research 20.1 (2009), pp. 110121. DOI: 10.1101/gr.097857.109.
- [Sug+14] Mahito Sugiyama et al. "Multi-task feature selection on multiple networks via maximum flows". In: *Proceedings of the 2014 SIAM International Conference on Data Mining*. 2014, pp. 199207. DOI: 10.1137/1.9781611973440.23.
- [Tib96] Robert Tibshirani. "Regression Shrinkage and Selection Via the Lasso". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 58.1 (1996), pp. 267288. ISSN: 1467-9868. DOI: 10.1111/j.2517-6161.1996.tb02080.x.
- [Toz+22] Veronica Tozzo et al. "Where do we stand in regularization for life science studies?" In: Journal of Computational Biology 29.3 (2022), pp. 213232. DOI: 10.1089/cmb.2019.0371.
- [YL05] Ming Yuan and Yi Lin. "Model Selection and Estimation in Regression with Grouped Variables". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 68.1 (2005), pp. 4967. DOI: 10.1111/j.1467-9868.2005.00532.x.

Empirical risk minimization

The idea behind (most) supervised machine learning algorithms:

Find a model f in the **hypothesis space** \mathcal{F} that **minimizes** the **empirical risk**.

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathcal{L}(y_i, f(\vec{x}_i))}_{\text{loss}}$$

Empirical risk minimization

The idea behind (most) supervised machine learning algorithms:

Find a model f in the **hypothesis space** \mathcal{F} that **minimizes** the **empirical risk**.

$$\mathbf{min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathcal{L}(y_i, f(\vec{x}_i))}_{\mathsf{loss}}$$

- Examples of losses:
 - For a regression problem, the quadratic loss

$$\mathcal{L}(y, f(\vec{x})) = (y - f(\vec{x}))^2$$

For a binary classification problem, the logistic loss

$$\mathcal{L}(y, f(\vec{x})) = -y \log(f(\vec{x})) - (1 - y) \log(1 - f(\vec{x}))$$

Regularized empirical risk minimization

- Idea: impose a priori constraints on the solution of the empirical risk minimization problem
- Parametric models: $\mathcal{F} = \{f_{\vec{w}}; \vec{w} \in \mathbb{R}^d\}$

$$\min_{\vec{w} \in \mathbb{R}^d} \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, f_{\vec{w}}(\vec{x}_i))}_{\text{loss}} + \lambda \underbrace{\Omega(\vec{w})}_{\text{regularizer}}$$

Example: Lasso

- Linear model: $f_{\vec{w}}(\vec{x}) = \langle \vec{w}, \vec{x} \rangle = w_0 + \sum_{j=1}^p w_j x_j$
- Regularized empirical risk minimization

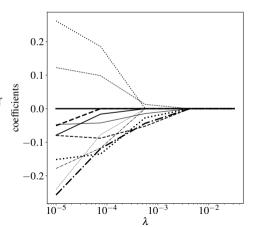
$$\min_{\vec{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, \langle \vec{w}, \vec{x}_i \rangle)}_{\text{loss}} + \lambda \underbrace{\frac{\Omega(\vec{w})}{\text{regularizer}}}_{\text{regularizer}}$$

- Prior knowledge / a priori constraints: few features are relevant.
- Lasso: $\Omega(\vec{w}) = ||\vec{w}||_1 = \sum_{j=0}^p |w_j|$ [Tib96]
- Sparsity: many features are assigned a weight of 0. They can be removed from the model.

Regularization coefficient λ

$$\min_{\vec{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, \langle \vec{w}, \vec{x}_i \rangle)}_{\text{loss}} + \lambda \underbrace{\Omega(\vec{w})}_{\text{regularizer}}$$

- $-\lambda$ controls the amount of regularization
- Typically set by grid search + cross-validation: {number of folds} × {number of values on the grid} experiments
- For the lasso, efficient ways to get the entire regularization path $\{\vec{w}_{\lambda} \text{ for } \lambda \in \{\lambda_{\min}, \dots, \lambda_{\max}\}\}$



Group-based regularization

$$\min_{\vec{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, \langle \vec{w}, \vec{x}_i \rangle)}_{\text{loss}} + \lambda \underbrace{\Omega_{\text{group}}(\vec{w})}_{\text{group-level regularizer}}$$

- Given a way of grouping the p features in G groups $\mathcal{G}_1, \ldots, \mathcal{G}_G$, each of size p_g , define Ω_{group} to encourage the selection of only a few groups
- Group Lasso [YL05]

$$\Omega_{ ext{group}}(\vec{w}) = \sum_{g=1}^G \sqrt{p_g} \sum_{j \in \mathcal{G}_g} w_j^2$$

Overlapping Group Lasso

[JOV09]

Multitask regularization

$$\min_{\vec{w} \in \mathbb{R}^p} \sum_{t=1}^T \underbrace{\frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L}(y_i^{(t)}, \langle \vec{w}^{(t)}, \vec{x}_i^{(t)} \rangle)}_{\text{loss}} + \lambda \underbrace{\Omega_{\text{tasks}}(\vec{w}^{(1)}, \dots, \vec{w}^{(T)})}_{\text{task regularizer}}$$

- Given T related tasks, define Ω_{tasks} so as to solve the T empirical risk minimization problems in such a way that the same features are selected across tasks.

- Multitask Lasso [OTJ09]

$$\Omega_{\mathsf{tasks}}(\vec{w}^{(1)},\ldots,\vec{w}^{(T)}) = \sum_{t=1}^T \sum_{j=1}^p \left(w_j^{(t)}
ight)^2$$

MuGLasso

Multitask Group Lasso:

- multitask group-level sparsity
- the same groups are selected for all tasks

$$\min_{\vec{w} \in \mathbb{R}^p} \ \sum_{t=1}^T \underbrace{\frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L}(y_i^{(t)}, \langle \vec{w}^{(t)}, \vec{x}_i^{(t)} \rangle)}_{\text{loss}} + \lambda \underbrace{\sum_{g=1}^G \sqrt{p_g} \sum_{j \in \mathcal{G}_g} \sum_{t=1}^T \left(w_j^{(t)}\right)^2}_{\text{mutltitask group-level sparsity}}$$

- If $T=1 \rightarrow \text{group Lasso}$
- If G = p and $\mathcal{G}_1, \dots, \mathcal{G}_p = \{1\}, \dots, \{p\} \rightarrow \mathsf{multitask}$ Lasso

A. Nouira & C.-A. Azencott. Multitask group Lasso for genome-wide association studies in diverse populations. PSB 2022

SMuGLasso

Sparse Multitask Group Lasso:

- the same groups are selected for all tasks
- among those, some groups can be task-specific

$$\min_{\vec{w} \in \mathbb{R}^p} \sum_{t=1}^T \underbrace{\frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L}(y_i^{(t)}, \langle \vec{w}^{(t)}, \vec{x}_i^{(t)} \rangle)}_{\text{loss}} + \lambda \sum_{g=1}^G \sqrt{p_g} \sum_{j \in \mathcal{G}_g} \sum_{t=1}^T \left(w_j^{(t)} \right)^2 \\ + \lambda_2 \underbrace{\sum_{g=1}^G \sqrt{p_g} \sum_{j \in \mathcal{G}_g} \sum_{t=1}^T \left| w_j^{(t)} \right|}_{\text{task-level sparsity}}$$

Graph-based regularization

$$\min_{\vec{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, \langle \vec{w}, \vec{x}_i \rangle)}_{\text{loss}} + \lambda_s \underbrace{||\vec{w}||_1}_{\text{sparsity}} + \lambda_g \underbrace{\Omega_{\text{graph}}(\vec{w})}_{\text{connectivity}}$$

- Given a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ of p nodes over the features, define Ω_{graph} to encourage the sparsity pattern to **respect the structure of** \mathcal{G} .

Graph-based regularization

$$\min_{\vec{w} \in \mathbb{R}^p} \ \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, \langle \vec{w}, \vec{x}_i \rangle)}_{\text{loss}} + \lambda_s \ \underbrace{||\vec{w}||_1}_{\text{sparsity}} + \lambda_g \ \underbrace{\Omega_{\text{graph}}(\vec{w})}_{\text{connectivity}}$$

- Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ of p nodes over the features, define Ω_{graph} to encourage the sparsity pattern to respect the structure of \mathcal{G} .
- Graph-fused Lasso

$$\Omega_{\mathsf{graph}}(\vec{w}) = \sum_{(v_i, v_k) \in \mathcal{E}} |w_j - w_k|$$

- Network-constrained Lasso

$$\Omega_{\mathsf{graph}}(\vec{w}) = \vec{w}^{ op} L \vec{w} = \sum_{(v_i, v_k) \in \mathcal{E}} A_{jk} (w_j - w_k)^2$$

[KSX091

[LL08]

Graph-based regularization

$$\min_{\vec{w} \in \mathbb{R}^p} \ \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, \langle \vec{w}, \vec{x}_i \rangle)}_{\text{loss}} + \lambda_s \ \underbrace{||\vec{w}||_1}_{\text{sparsity}} + \lambda_g \ \underbrace{\Omega_{\text{graph}}(\vec{w})}_{\text{connectivity}}$$

- Given a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ of p nodes over the features, define Ω_{graph} to encourage the sparsity pattern to respect the structure of \mathcal{G} .
- Graph Lasso: overlapping group lasso with edges as groups

[JOV09]

$$\Omega_{\mathrm{graph}}(\vec{w}) = \inf_{(\vec{\beta}_1, \dots, \vec{\beta}_{\mathcal{E}}): \vec{w} = \sum_{k=1}^{|\mathcal{E}|} \beta_k} \sum_{k=1}^{|\mathcal{E}|} ||\beta_k||_2^2 \qquad \vec{\beta}_k \in \mathbb{R}^p \text{ s.t. } \vec{\beta}_{kj} \neq 0 \text{ iff node } j \text{ in edge } k$$

Network-constrained Lasso

$$\min_{\vec{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, \langle \vec{w}, \vec{x}_i \rangle)}_{\text{loss}} + \lambda_s \underbrace{||\vec{w}||_1}_{\text{sparsity}} + \lambda_g \underbrace{\vec{w}^\top L \vec{w}}_{\text{connectivity}}$$

Can be solved as a Lasso on transformed data

$$X^* = \frac{1}{\sqrt{1+\lambda_g}} \begin{pmatrix} X \\ \sqrt{\lambda_g} S^{\top} \end{pmatrix} \in \mathbb{R}^{(n+m)\times p} \qquad \vec{y}^* = \begin{pmatrix} \vec{y} \\ 0 \end{pmatrix} \in \mathcal{Y}^{n+m}$$

where $S \in \mathbb{R}^{m \times p}$ such that $L = SS^{\top}$

with regularization parameter
$$\frac{\lambda_s}{\sqrt{1+\lambda_g}}$$
 and then $\vec{w}=\sqrt{1+\lambda_g}\,\vec{w}^*$

Network-constrained Lasso

$$\min_{\vec{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, \langle \vec{w}, \vec{x}_i \rangle)}_{\text{loss}} + \lambda_s \underbrace{||\vec{w}||_1}_{\text{sparsity}} + \lambda_g \underbrace{\vec{w}^\top L \vec{w}}_{\text{connectivity}}$$

Can be solved as a Lasso on transformed data

$$X^* = \frac{1}{\sqrt{1+\lambda_g}} \begin{pmatrix} X \\ \sqrt{\lambda_g} S^{\top} \end{pmatrix} \in \mathbb{R}^{(n+m)\times p} \qquad \vec{y}^* = \begin{pmatrix} \vec{y} \\ 0 \end{pmatrix} \in \mathcal{Y}^{n+m}$$

where $S \in \mathbb{R}^{m \times p}$ such that $L = SS^{\top}$

with regularization parameter $\frac{\lambda_s}{\sqrt{1+\lambda_q}}$ and then $\vec{w}=\sqrt{1+\lambda_g}\vec{w}^*$

- Defining S:
 - Option 1 (m=p) and $S=U\Lambda^{1/2}$ with $L=U\Lambda U^{\top} \to {\rm runtime}$ issues $\ \odot$
 - Option 2 $(m=|\mathcal{E}|)$ and S is the incidence matrix of $\mathcal{G} o$ memory issues $\ \odot$